• 제목/요약/키워드: Atmospheric dispersion factor

검색결과 26건 처리시간 0.027초

The Annual Averaged Atmospheric Dispersion Factor and Deposition Factor According to Methods of Atmospheric Stability Classification

  • Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • 제41권3호
    • /
    • pp.260-267
    • /
    • 2016
  • Background: This study analyzes the differences in the annual averaged atmospheric dispersion factor and ground deposition factor produced using two classification methods of atmospheric stability, which are based on a vertical temperature difference and the standard deviation of horizontal wind direction fluctuation. Materials and Methods: Daedeok and Wolsong nuclear sites were chosen for an assessment, and the meteorological data at 10 m were applied to the evaluation of atmospheric stability. The XOQDOQ software program was used to calculate atmospheric dispersion factors and ground deposition factors. The calculated distances were chosen at 400 m, 800 m, 1,200 m, 1,600 m, 2,400 m, and 3,200 m away from the radioactive material release points. Results and Discussion: All of the atmospheric dispersion factors generated using the atmospheric stability based on the vertical temperature difference were shown to be higher than those from the standard deviation of horizontal wind direction fluctuation. On the other hand, the ground deposition factors were shown to be same regardless of the classification method, as they were based on the graph obtained from empirical data presented in the Nuclear Regulatory Commission's Regulatory Guide 1.111, which is unrelated to the atmospheric stability for the ground level release. Conclusion: These results are based on the meteorological data collected over the course of one year at the specified sites; however, the classification method of atmospheric stability using the vertical temperature difference is expected to be more conservative.

A Study on Annual Atmospheric Dispersion Factors Between Continuous and Purge Releases of Gaseous Radioactive Effluents

  • Kim, Na-Hyun;Hwang, Won-Tae;Kim, Chang-Lak
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.177-186
    • /
    • 2021
  • Radioactive materials from nuclear power facilities can be released into the atmosphere through various channels. Recently, the dispersion of radioactive materials has become critical issue in Korea after Kori Unit 1 and Wolsong Unit 1 were permanently shut down. In this study, annual atmospheric dispersion factors were compared based on the continuous release and purge release using the XOQDOQ computer program, a method for calculating atmospheric dispersion factors at commercial nuclear power stations. The meteorological data analyzed in this study was based on the Shin Kori nuclear power meteorological tower which has the largest operating nuclear power plants in Korea, for three years (from 2008 to 2010). The analysis results of the dispersion factor of the radioactive material release obtained using the XOQDOQ program showed that the difference between the continuous release and purge release was within two times. This study will be valuable helpful for revealing the uncertainty of the predictive atmospheric dispersion factor to achieve regulation.

입력변수의 조건에 따른 대기확산모델의 민감도 분석 (Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable)

  • 정진도;김장우;김정태
    • 한국환경과학회지
    • /
    • 제14권9호
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.

확산계수의 모델링방법이 대기확산인자에 미치는 영향 (Influence of Modelling Approaches of Diffusion Coefficients on Atmospheric Dispersion Factors)

  • 황원태;김은한;정해선;정효준;한문희
    • Journal of Radiation Protection and Research
    • /
    • 제38권2호
    • /
    • pp.60-67
    • /
    • 2013
  • 가우시안 플륨모델(Gaussian plume model)을 사용한 대기확산의 예측에서 확산계수는 결과에 중요한 영향을 미치는 변수이다. 확산계수의 평가방법은 다양하며, 본 연구에서는 미국 원자력규제위원회(U. S. NRC) 권고 규제지침, 캐나다 원자력안전위원회(CNSC) 권고 규제지침, 확률론적 사고결말해석코드 MACCS와 MACCS2에서 권고 또는 적용하는 방법을 고찰하였다. U. S. NRC에서 권고하는 부지적합성 평가를 위한 가상사고시 대기확산모델을 기반으로 확산계수의 평가방법이 대기확산인자에 미치는 영향을 분석하였다. 확산계수는 Pasquill-Gifford 곡선을 기반으로 각기 다른 연구자들에 의해 얻어진 곡선의 피팅식(curve fitting equations)을 적용 또는 권고하고 있음을 확인하였다. 수평확산계수는 모든 규제지침과 코드에서 플륨의 사행효과를 반영하여 보정하고 있으나 그 적용 방법에 있어서는 차이를 나타냈다. 수직확산계수는 U. S. NRC 권고 규제지침을 제외하고 표면거칠기를 반영하여 보정하고 있다. 특정 표면거칠기에 대해 확산계수의 적용방법에 따라 대기확산인자는 최대 약 4배의 차이를 나타냈다. 표면거칠기는 대기확산인자에 중요한 영향을 나타냈으며, 동일 적용방법에 대해 표면거칠기에 따라 대기확산인자는 약 2~3배의 차이를 나타냈다.

산지 내 오염물질 확산의 2차원 수치해석 (Numerical Analysis of the Two-Dimensional Pollutant Dispersion Over Hilly Terrain)

  • 김현구;이정묵
    • 한국대기환경학회지
    • /
    • 제13권5호
    • /
    • pp.383-396
    • /
    • 1997
  • Numerical prediction of the pollutant dispersion over a two-dimensional hilly terrain is presented. The dispersion model used in the present work is based on the gradient diffusion theory and the finite-volume method on a non-orthogonal boundary-fitted grid system. The numerical model is validated by comparing the results with the available experimental data for the flat-floor dispersion within a turbulent boundary-layer. The numerical error analysis is performed based on the guideline of Kasibhatla et al.(1988) for the elevated-source dispersion in the flat-floor boundary layer having a power-law velocity and linear eddy-diffusivity profile. The influences of the two-dimensional hilly terrain on the dispersion from a continuously released source are numerically investigated by changing the emission locations and heights. It is found that the distributions of ground-level concentration are strongly influenced by the source location and the emission height. Hence, the terrain amplification factor is greatly enhanced when the pollutant source is located within a flow separation region. Dispersion from a source of short duration is also simulated and the duration time of the pollutant is compared at several downstream locations on a hilly terrain. The results of the numerical prediction are applied to the evaluation of environmental impacts due to the automobile exhausts at the seashore highway with a parallel mountain range.

  • PDF

분산계수의 전처리에 의한 대기분산모델 성능의 개선 (Improvement of Atmospheric Dispersion Model Performance by Pretreatment of Dispersion Coefficients)

  • 박옥현;김경수
    • 한국대기환경학회지
    • /
    • 제23권4호
    • /
    • pp.449-456
    • /
    • 2007
  • Dispersion coefficient preprocessing schemes have been examined to improve plume dispersion model performance in complex coastal areas. The performances of various schemes for constructing the sigma correction order were evaluated through estimations of statistical measures, such as bias, gross error, R, FB, NMSE, within FAC2, MG, VG, IOA, UAPC and MRE. This was undertaken for the results of dispersion modeling, which applied each scheme. Environmental factors such as sampling time, surface roughness, plume rising, plume height and terrain rolling were considered in this study. Gaussian plume dispersion model was used to calculate 1 hr $SO_2$ concentration 4 km downwind from a power plant in Boryeung coastal area. Here, measured data for January to December of 2002 were obtained so that modelling results could be compared. To compare the performances between various schemes, integrated scores of statistical measures were obtained by giving weights for each measure and then summing each score. This was done because each statistical measure has its own function and criteria; as a result, no measure can be taken as a sole index indicative of the performance level for each modeling scheme. The best preprocessing scheme was discerned using the step-wise method. The most significant factor influencing the magnitude of real dispersion coefficients appeared to be sampling time. A second significant factor appeared to be surface roughness, with the rolling terrain being the least significant for elevated sources in a gently rolling terrain. The best sequence of correcting the sigma from P-G scheme was found to be the combination of (1) sampling time, (2) surface roughness, (3) plume rising, (4) plume height, and (5) terrain rolling.

풍향변동량 측정에 의한 춘천지역의 연기 수평확산폭 산출 (Estimation of Lateral Dispersion Parameter using Observed Wind Direction Fluctuation in Chunchon)

  • 이종범;김정식;김용국;조창래
    • 한국대기환경학회지
    • /
    • 제12권2호
    • /
    • pp.141-149
    • /
    • 1996
  • Lateral dispersion parameter(.sigma.$_{y}$) which is an important factor in atmospheric dispersion can be estimated byusing wind direction fluctuation(.sigma.$_{\theta}$). In this paper, we studied the characteristics of the .sigma.$_{\theta}$ in the Chunchon basin and calculated the .sig- ma.$_{y}$ by using the .sigma.$_{\theta}$. We could find some characteristics of the .sigma.$_{\theta}$ which showed small value, when the atmospheric condition was in weak unstable (C class) and neutral (D class). Moreover, when the atmospheric stability was neutral, there was no difference of .sigma.$_{\theta}$ with wind speed. On the other hand, .sigma.$_{\theta}$ showed large values at the strong unstable (A class) and strong stable (F class) condition with low wind speed. In this case, the .sigma.$_{\theta}$ increased as long as averaging time due to the long-period wind direction fluctuation by the terrain effect. In the result of calculation of .sigma.$_{y}$, it was smaller than that of pasquill-Gifford curve. Especially, when the atmospheric condition was in a neutral and stable, .sigma.$_{y}$ showed small increment as the downwind distance increased.creased.

  • PDF

수로 장치내에서 공동영역 주변의 확산에 관한 실험적 연구 (An experimental investigaion of dispersion around cavity region in water channel)

  • 정상진
    • 한국대기환경학회지
    • /
    • 제9권4호
    • /
    • pp.295-302
    • /
    • 1993
  • The nature of the cavity region and dispersion around trianglular ridge was investigated using model. The artifical neutral boundary layer was simulated in water channel. Two dimensional trianglar ridges, having height of 1.2 cm and various width were placed normal to the flow. Mean velocity with many dimensionless parameters were measured and compared with wind tunnel results by other studies. Using vorticity generator and roughness, the neutral boundary layer was well represented by the water channel. concentration patterns resulting from dye source placed 0.2 cm height above were examined. Narrower the trianglar ridge width resulted in increased amplification factor and the larges amplification factor was observed near downward top of the ridge.

  • PDF

Estimation of Effective Dose to Residents Due to Hypothetical Accidents During Dismantling of Steam Generator

  • Kyeong-Ju Lee;Chang-Lak Kim
    • 방사성폐기물학회지
    • /
    • 제21권2호
    • /
    • pp.183-191
    • /
    • 2023
  • The potential impact of hypothetical accidents that occur during the immediate and deferred dismantling of the Kori Unit 1 steam generator has been comprehensively evaluated. The evaluation includes determining the inventory of radionuclides in the Steam Generator based on surface contamination measurements, assuming a rate of release for each accident scenario, and applying external and internal exposure dose coefficients to assess the effects of radionuclides on human health. The evaluation also includes calculating the atmospheric dispersion factor using the PAVAN code and analyzing three years of meteorological data from Kori NPP to determine the degree of diffusion of radionuclides in the atmosphere. Overall, the effective dose for residents living in the Exclusion Area Boundary (EAB) of Kori NPP is predicted, an it is found that the maximum level of the dose is 0.034% compared to the annual dose limit of 1 mSv for the general public. This implies that the potential impact of hypothetical accidents on human health discussed above is within acceptable limits.

한국원자력연구소 부지에서 방사성물질의 대기확산에 대한 정온상태의 영향 (Influence of Calm Conditions on the Atmospheric Dispersion of Radioactive Effluents at KAERI Site)

  • 황원태;서경석;김은한;최영길;한문희;조규성
    • Journal of Radiation Protection and Research
    • /
    • 제23권2호
    • /
    • pp.103-107
    • /
    • 1998
  • 복잡한 내륙분지에 위치한 한국원자력연구소 부지에서 대기확산해석에 있어서 정온상태에 따른 영향을 고찰하였다. 미국 원자력규제위원회 전산프로그램 XOQDOQ와 PAVAN을 사용하여 원자력 시설의 정상운영시 와 가상사고시 대기확산인자를 평가하였다. 1997년에 측정된 연간 기상자료로부터 대기안정도에 따른 풍향, 풍속의 발생빈도분포를 작성하여 프로그램의 입력자료로 사용하였다. 정온에 대한 정의를 0.5 m $sec^{-1}$에서 0.21 m $sec^{-1}$로 변화시켰을 때 최대치를 나타내는 풍하방향에서의 확산인자는 정상운영시와 가상사고시에 대해 각각 1.62배, 2.16배 높았다.

  • PDF