• Title/Summary/Keyword: Atmospheric and environmental observation

Search Result 280, Processing Time 0.025 seconds

Aerosol Optical Thickness Measurements from the Microtops-II Multi-wavelength Radiometer (마이크로탑스 II 다파장 복사계를 이용한 대기 에어로솔 광학 두께 관측)

  • Lee, Kwon-Ho;Lee, Kyu-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.57-66
    • /
    • 2016
  • Aerosol optical thickness (AOT) and ${\AA}ngstr{\ddot{o}}m$ exponents were monitored at the KIU site ($N35.91^{\circ}$, $E128.80^{\circ}$) during the continuous observation period of 5 November 2010~19 March 2013 using a Microtops-II handheld munti-wavelenth radiometer. Comparisons of AOT values from the Microtops-II with the Sun-sky radiometer data from the Aerosol Robotic Network (AERONET) showed very good agreements: correlation coefficients are lies between 0.98 and 0.99, slopes range from 0.98 to 1.01, and intercepts are smaller than 0.008 at five wavelengths (380 nm, 440 nm, 500 nm, 675 nm, 870 nm). During the observation period, the Microtops-II AOT and ${\AA}ngstr{\ddot{o}}m$ exponents are ${\tau}_{500}=0.560{\pm}0.351$, ${\alpha}_{500-870}=1.135{\pm}0.445$. Fine mode aerosols appear to dominate in the study region with significant contributions from small particles.

Episode Analysis of the Habit and Phase Changes of Snow Crystals in the Wintertime Yeongdong Region (겨울철 영동지역 눈 결정 습성과 성상 변화 에피소드 분석)

  • Young-Gil Choi;Byung-Gon Kim;Ji-Yun Kim;Tae-Yeon Kim;Jin-Heon Han;GyuWon Lee;Kwonil Kim;Ki-Hoon Kim;Byung-Hwan Lim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.139-151
    • /
    • 2024
  • The Yeongdong region has suffered from severe snowstorms and the relevant damage such as traffic accidents on slippery roads, and the collapse of greenhouses and temporary buildings. While a lot of research on snowfall has been conducted, the detailed study of snow crystals' phase and habit through intensive observations and the relevant microphysical analysis is still lacking. Therefore, a snowflake camera, PARSIVEL, and intensive radiosonde soundings were utilized to investigate phase and habit changes in solid precipitation. Two remarkable episodes of phase and habit changes were selected such as 19 March 2022 and 15 February 2023. Both events occurred in the synoptic condition of the High in the north and the Low passing by the south, which was accompanied by rapid temperature cooling below 2.5 km. During the events of a short period between 3 to 6 hours, the temperature at 850 hPa decreased by about 4 to 6℃. This cooling led to a change in the main habit of snow particles from riming to aggregate, identified with both MASC and PARSIVEL. Meanwhile, the LDAPS model analyses do not successively represent the rapid cooling and short-term variations of solid precipitation, probably by virtue of overestimating low-level equivalent potential temperature during these periods. The underlying causes of these the low-level temperature variations within 6 hours, still remain unclear. It might be associated with mesoscale orographic phenomenon due to the mountains and East Sea effects, which certainly needs an intensive and comprehensive observation campaign.

Visibility Estimated from the Multi-wavelength Sunphotometer during the Winter 2011 Intensive Observation Period at Seoul, Korea (2011년 겨울철 서울시 대기 집중 관측 기간 동안 다파장 복사계로 분석된 에어러솔 연직분포와 시정 거리)

  • Lee, Kwon-Ho;Kim, Kyung-Won;Kim, Gwanchul;Jung, Kweon;Lee, Soon-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.682-691
    • /
    • 2013
  • The aerosol extinction vertical profile and surface visibility have been derived from the Microtops-II sunphotometer observation during the winter 2011 intensive observation period (IOP) at Seoul, Korea. Using models of degradation of aerosol optical thickness (AOT) and aerosol scale height, we have performed extinction-visibility modulation to determine the height dependent aerosol extinction and visibility. It is shown that the aerosol loading is relatively low during IOP (mean $AOT_{550}=0.22{\pm}0.08$, ${\AA}$ngstr$\ddot{o}$m exponent=$1.14{\pm}0.26$). Modeled extinction by use of Microtops II sunphotometer data shows good agreement with measurements by the Multi-wavelenth Polarization Lidar (MPoLAR), and the derived surface visibility are consistent with data from the transmissometer. These results emphasize the use of a vertically resolved extinction from AOT to predict visibility conditions at ground level.

Vertical Structure of the Coastal Atmospheric Boundary Layer Based on Terra/MODIS Data (Terra/MODIS 자료를 이용한 연안 대기경계층의 연직구조)

  • Kim, Dong Su;Kwon, Byung Hyuk
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.281-289
    • /
    • 2007
  • Micrometeorlogical and upper air observation have been conducted in order to determine the atmospheric boundary layer depth based on data from satellite and automatic weather systems. Terra/MODIS temperature profiles and sensible heat fluxes from the gradient method were used to estimate the mixed layer height over a coastal region. Results of the integral model were in good agreement with the mixed layer height observed using GPS radiosonde at Wolsung ($35.72^{\circ}N$, $129.48^{\circ}E$). Since the variation of the mixed layer height depends on the surface sensible heat flux, the integral model estimated properly the mixed layer height in the daytime. The buoyant heat flux, which is more important than the sensible heat flux in the coastal region, must be taken into consideration to improve the integral model. The vertical structure of atmospheric boundary layer can be analyzed only with the routine data and the satellite data.

Generation and Verification on the Synthetic Precipitation/Temperature Data

  • Oh, Jai-Ho;Kang, Hyung-Jeon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2016.09a
    • /
    • pp.25-28
    • /
    • 2016
  • Recently, because of the weather forecasts through the low-resolution data has been limited, the demand of the high-resolution data is sharply increasing. Therefore, in this study, we restore the ultra-high resolution synthetic precipitation and temperature data for 2000-2014 due to small-scale topographic effect using the QPM (Quantitative Precipitation Model)/QTM (Quantitative Temperature Model). First, we reproduce the detailed precipitation and temperature data with 1km resolution using the distribution of Automatic Weather System (AWS) data and Automatic Synoptic Observation System (ASOS) data, which is about 10km resolution with irregular grid over South Korea. Also, we recover the precipitation and temperature data with 1km resolution using the MERRA reanalysis data over North Korea, because there are insufficient observation data. The precipitation and temperature from restored current climate reflect more detailed topographic effect than irregular AWS/ASOS data and MERRA reanalysis data over the Korean peninsula. Based on this analysis, more detailed prospect of regional climate is investigated.

  • PDF

Prototype Development for Optimization Technique of 3D Visualization of Atmospheric Environmental Information (기상 및 대기질 정보의 3차원 표출 최적화를 위한 시제품 개발 연구)

  • Kim, Gunwoo;Na, Hana;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1047-1059
    • /
    • 2019
  • To address the increase of weather hazards and the emergence of new types of such hazards, an optimization technique for three-dimensional (3D) representation of meteorological facts and atmospheric information was examined in this study as a novel method for weather analysis. The proposed system is termed as "meteorological and air quality information visualization engine" (MAIVE), and it can support several file formats and can implement high-resolution 3D terrain by employing a 30 m resolution digital elevation model. In this study, latest 3D representation techniques such as wind vector fields, contour maps, stream vector, stream line flow along the wind field and 3D volume rendering were applied. Implementation of the examples demonstrates that the results of numerical modeling are well reflected, and new representation techniques can facilitate the observation of meteorological factors and atmospheric information from different perspectives.

One-Dimensional Model for Simulations of Atmospheric Mixed Layer : Application to Dukyang Bay Area (대기혼합층 모사를 위한 1차원 수치모형 : 득량만에서의 적용)

  • Kim, Yoo-Keun;Moon, Sung-Euii;Ahn, Joong-Bae
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.425-435
    • /
    • 1997
  • One-dimensional thermodynamic mixed layer model to stimulate variations of meteorological variables wish the planetary boundary layer has been developed In this study. This model consists of 2 prognostic equations, which can predict the variations of potential temperature and mixing ratio and several diagnostic equations. Physics within the surface and mixed layers has been considered seperately in the model. For the variations of the model, Its result has been analysed and compared with observated data over Ole Dukyang Bay for one day, July 23, 1992. The simulated height of mixed layer is comparable to the observation and the variations of temperature and mixing ratio in the mixed layer are also reasonably simulated. Those Imply that the model responds appropriately with given boundary conditions In sprite of Its simplilfied assumptions applied to the model and insufficient boundary and Initial conditions.

  • PDF

Sensitivity Analysis of Ozone Simulation according to the Impact of Meteorological Nudging (기상자료동화에 따른 CMAQ 모델의 오존농도 모의 민감도 연구)

  • Kim, Taehee;Kim, Yoo-Keun;Shon, Zang-Ho;Jeong, Ju-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.4
    • /
    • pp.372-383
    • /
    • 2016
  • This study aimed at analyzing the sensitivity of ozone simulation in accordance with the meteorological nudging for a high nocturnal ozone episode. To demonstrate the effectiveness of nudging methods (e.g., nudging techniques and application domains), the following six experiments were designed: (1) control without nudging, (2) experiment with application of observation nudging to all domains (domain 1~4), and (3)~(6) experiments with application of grid nudging to domain 1, domain 1~2, domain 1~3 and all domains, respectively. As a result, the meteorological nudging had a direct (improvement of input data) and indirect (estimate natural emission) effect on ozone simulation. Nudging effects during the daytime were greater than those during the nighttime due to low accuracy of wind direction during the nighttime. On comparison of the nudging techniques, the experiments in which grid nudging was applied showed more improved results than the experiments in which observation nudging was applied. At this time point, the simulated concentrations were generally similar to the observed concentrations due to the increase in the nudging effect when grid nudging was applied up to the sub-domain. However, for high nocturnal ozone uptakes, the experiment in which grid nudging was applied do domain 1~3 showed better results than the other experiments. This is because, when grid nudging was applied to the high resolution domain (e.g., domain 4 with 1 km), the local characteristics were removed due to the smoothing effects of meteorological conditions.

Intercomparison between Temperature and Humidity Sensors of Radiosonde by Different Manufacturers in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign (대설관측실험(Experiment on Snow Storms At Yeongdong: ESSAY) 기간 중 두 제조사 라디오존데 기온과 습도 센서 상호 비교)

  • Seo, Won-Seok;Eun, Seung-Hee;Kim, Byung-Gon;Seong, Dae-Kyeong;Lee, Gyu-Min;Jeon, Hye-Rim;Choi, Byoung-Cheol;Ko, A-reum;Chang, Ki-Ho;Yang, Seung-Gu
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.347-356
    • /
    • 2016
  • Radiosonde is an observation equipment that measures pressure (geopotential height), temperature, relative humidity and wind by being launched up from the ground. Radiosonde data which serves as an important element of weather forecast and research often causes a bias in a model output due to accuracy and sensitivity between the different manufacturers. Although Korean Meteorological Administration (KMA) and several institutes have conducted routine and intensive radiosonde observations, very few studies have been done before on the characteristics of radiosonde performance. Analyzing radiosonde observation data without proper understanding of the unique nature of those sensors may lead to a significant bias in the analysis of results. To evaluate performance and reliability of radiosonde, we analyzed the differences between two sensors made by the different manufacturers, which have been used in the campaign of Experiment on Snow Storm At Yeongdong (ESSAY). We improved a couple of methods to launch the balloon being attached with the sensors. Further we examined cloud-layer impacts on temperature and humidity differences for the analysis of both sensors' performance among various weather conditions, and also compared daytime and nighttime profiles to understand temporal dependence of meteorological sensors. The overall results showed that there are small but consistent biases in both temperature and humidity between different manufactured sensors, which could eventually secure reliable precisions of both sensors, irrespective of accuracy. This study would contribute to an improved sounding of atmospheric vertical states through development and improvement of the meteorological sensors.

Intercomparison of Wind and Air Temperature Fields of Meteorological Model for Forecasting Air Quality in Seoul Metropolitan Area (수도권지역 대기질 예측을 위한 기상장 모델의 바람장과 온도장 비교 연구)

  • Jeong, Ju-Hee;Kim, Yoo-Keun;Moon, Yun-Seob;Hwang, Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.640-652
    • /
    • 2007
  • The MM5, RAMS and WRF, meteorological models have provided the dynamical parameters as inputs to air quality model. A major content of this study is that significant characteristics of three models for high-ozone occurrence analyze for surface wind and air temperature fields and compare with observation data in Seoul metropolitan area. An analysis of air temperature field revealed that location of core in high temperature of MM5 and WRF differed from that of RAMS. MM5 and WRF indicated high temperature in Seoul but RAMS represented it on the outskirts of Seoul. MM5 and WRF were underestimated maximum temperature during daytime but RAMS simulated similar value with observation data. Surface wind field with three models, it was shown many differences at horizontal distribution of wind direction. RAMS indicated weak wind speed in land and strong sea breeze at coastal areas than MM5 and WRF. However wind speed simulated by three model were overestimated during both daytime and nighttime.