• 제목/요약/키워드: Atmospheric aerosols

검색결과 380건 처리시간 0.025초

Experimental Studies on Wet Scavenging of Atmospheric Aerosols by Rain Drops

  • Park Jeong-Ho;Suh Jeong-Min;Choi Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제21권E3호
    • /
    • pp.87-94
    • /
    • 2005
  • Wet scavenging by rain drops is a most important removal process of air pollutants. In order to study the scavenging mechanisms of aerosol particles, the characteristics of chemical components in the rain water were examined as a function of the amount of rainfall. Rain water were collected continuously and separated into the soluble and insoluble components. The elemental concentrations in both components were determined by a PIXE analysis. The physical and chemical characteristics of atmospheric aerosols during the rainfall events were measured simultaneously. The elemental concentrations in rain water decreased substantially just after rain started and then gradually declined in subsequential rain fall exceeding 1.0 mm. The large particles were scavenged more easily than the fine particles. Fe, Ti and Si in rain water were in high insoluble state. Contrarily, almost whole of S was dissolved in rain water.

Persulfate Wet Oxidation Method for the Determination of Total Phosphorus in Atmospheric Aerosols and Its Application for a Year-round Observation in Beijing

  • Okuda, Tomoaki;Gunji, Yuma;He, Kebin;Ma, Yongliang
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권3호
    • /
    • pp.169-175
    • /
    • 2013
  • Measurement of the phosphorus concentration in aerosols in Beijing, which was a representative East Asian mega-city, was carried out. The optimum procedure for analyzing phosphorus in aerosols was found in this study. Recovery of phosphorus in environmental samples through the improved method was almost 100%. The concentration of phosphorus in TSP was $145{\pm}47\;ng/m^3$, with a seasonal variation showing high concentrations in winter and low concentrations in summer. The concentrations of phosphorus in $PM_{2.5}$ accounted for $35{\pm}6%$ of those in TSP, with no seasonal variations. The major source of phosphorus in aerosols in Beijing was soil dust, and additional sources of phosphorus in fine particles could be coal combustion and biomass burning.

A comparative study of the ionic composition of aerosols from the North Sea and a North Sea coastal area

  • Lee, Jong-Min;Schrems, Otto
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2001년도 추계학술대회 논문집
    • /
    • pp.47-48
    • /
    • 2001
  • It is well known that atmospheric aerosols play an important role in the radiation balance of the earth and meteorological processes as well as in atmospheric chemistry. Aerosols may origin from both natural and/or anthropogenic sources. Thus, the chemical composition of aerosols can vary considerably. For example, the chemical composition of marine aerosol has been the subject of a considerable number of investigations, including the evaluation of long-range transport of anthropogenic constituents on the chemistry of the remote marine boundary layer. (omitted)

  • PDF

대기 에어로졸의 체류시간과 화학조성 I. 부산지역에서 주요이온과 중금속의 농도 (Residence Times and Chemical Composition of Atmospheric Aerosols I. Concentration of Major Ions and Heavy Metals in Pusan)

  • 양한섭;전은주;김영일;옥곤
    • 한국환경과학회지
    • /
    • 제8권1호
    • /
    • pp.51-59
    • /
    • 1999
  • Chemical composition of atmospheric aerosols was measured at 4 sites in Pusan. All the samples were collected with a high volume air sampler from January to October 1996, to analyze major ions and heavy metals. Dominant ions of aerosols were S $O_4$$^{2-}$ in anion and N $a^{+}$ in cation. Sulfate, nitrate and ammonium ions in aerosols showed high enrichment factor to soil and seawater composition. The concentrations of heavy metals in aerosols was lowest at the site PI near the coast. The lowest concentrations of major ions and heavy metals mainly appeared in August, probably due to scavenging by frequent rains. Especially, the concentrations of total suspended particulate matter(TSP) and heavy metals in aerosols showed good correlations in Pusan. Based on crustal Al, enrichment factors for some metals(Zn, Cu, Pb, Cd) in aerosols were significantly greater than unity, and the order was Cd > Pb > Zn > Cu. This evidence suggests that Cd and Pb are derived predominantly from non-crustal sources.s.

  • PDF

Multi-wavelength Raman LIDAR for Use in Determining the Microphysical, Optical, and Radiative Properties of Mixed Aerosols

  • Lee, Kwon-Ho;Noh, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권1호
    • /
    • pp.91-99
    • /
    • 2015
  • The Multi-wavelength Raman LIDAR (MRL) system was developed to enable a better understanding of the complex properties of aerosols in the atmosphere. In this study, the microphysical, optical, and radiative properties of mixed aerosols were retrieved using the discrete aerosol observation products from the MRL. The dust mixing ratio, which is the proportion of dust particles to the total mixed, was derived using the particle depolarization ratio. It was employed in the retrieval of backscattering and extinction coefficient profiles for dust and non-dust particles. The vertical profiles of aerosol optical properties were then used as input parameters in the inversion algorithm for the retrieval of microphysical parameters including the effective radius, refractive index, and the single scattering albedo (SSA). Those products were successfully applied to an analysis of radiative flux using a radiative transfer model. The relationship between the MRL derived extinction and aerosol radiative forcing (ARF) in short-wavelength was assessed over Gwangju, Korea. The results clearly demonstrate that the MRL-derived extinction profiles are a good surrogate for use in the estimation of optical, microphysical, and radiative properties of aerosols. It is considered that the analytical results shown in this study can be used to provide a better understanding of air quality and the variation of local radiative effects due to aerosols.

라만 라이다의 석영 채널을 이용한 고도별 황사 농도 산출 (A Retrieval of Vertically-Resolved Asian Dust Concentration from Quartz Channel Measurements of Raman Lidar)

  • 노영민;이권호;이한림
    • 한국대기환경학회지
    • /
    • 제27권3호
    • /
    • pp.326-336
    • /
    • 2011
  • The Light Detection and Ranging (Lidar) observation provides a specific knowledge of the temporal and vertical distribution and the optical properties of the aerosols. Unlike typical Mie scattering Lidars, which can measure backscattering and depolarization, the Raman Lidar can measure the quartz signal at the ultra violet (360 nm) and the visible (546 nm) wavelengths. In this work, we developed a method for estimating mineral quartz concentration immersed in Asian dust using Raman scattering of quartz (silicon dioxide, silica). During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profile of the dust concentrations. The satellite observations such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) confirmed spatial distribution of Asian dust. This approach will be useful for characterizing the quartz dominated in the atmospheric aerosols and the investigations of mineral dust. It will be especially applicable for distinguishing the dust and non-dust aerosols in studies on the mixing state of Asian aerosols. Additionally, the presented method combined with satellite observations is enable qualitative and quantitative monitoring for Asian dust.

기후변화 대응 에어러솔 연구 발전을 위한 정책 연구 (Policy Studies for Advancing Aerosol Research on Climate Change in Korea)

  • 김지영;이용섭;신임철
    • 대기
    • /
    • 제20권1호
    • /
    • pp.49-61
    • /
    • 2010
  • Atmospheric aerosols play a crucial role for changing climate, resulting in a wide range of uncertainty for future climate prediction. In this paper we review current international research status and trend of climate-related aerosol science. There have been carried out a number of campaigns (including ACE-Asia, TRACE-P, ABC, and so on) and special experiments with some modeling studies over Korea, East Asia, and the Northwestern Pacific to characterize the various properties (physical, chemical, optical, and radiative) of Asian aerosols and evaluate their climate forcing impacts. But some parts of the aerosol research may need to be improved, advanced, or newly launched. Especially, a chemical transport model (CTM) embedded by a general circulation model (GCM) should be developed by the national scientific community with a high research priority, actively collaborating with international community in order to estimate direct and indirect global radiative forcing due to anthropogenic and natural aerosols.

입자층 에어로졸여과의 과도거동에 관한 실험연구 : 압력강하에 대한 입자 퇴적의 영향 (An Experimental Study on Transient Behavior of Granular Aerosol Filtration : Effect of Particle Deposition on Pressure Drop)

  • 정용원
    • 한국대기환경학회지
    • /
    • 제13권3호
    • /
    • pp.193-205
    • /
    • 1997
  • Experiments on granular filtration of polydispersed aerosols were conducted to determine the changes in pressure drop necessary to maintain a given gas flow rate as filter becomes clogged with deposited particles. Among the various variables which affect the increase in the pressure drop during the filtration, the most important one was found to be the size of the deposited aerosol particles. It was shown that for a given extent of the total deposition, the extent of increase in pressure drop increases with the decrease of the deposited aerosol size. For the general case where the deposited particles have different sizes, a procedure was proposed for correlating and predicting experimental results on pressure drop. This procedure was found applicable to bidispersed aerosols and polydispersed aerosols.

  • PDF

Characterization of Size Distribution and Water Solubility of 15 Elements in Atmospheric Aerosols

  • Park, Jeong-Ho;Sun, Jeong-Min;Park, Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제17권E1호
    • /
    • pp.1-7
    • /
    • 2001
  • The elemental characteristics of atmospheric aerosols were investigated as a function of particle size and water solubility. The aerosol particles were samples at 12 individual size ranges between 0.01 and 30㎛. Collected aerosol particles were separated into both soluble and insoluble components. The concentrations of 15 elements in both components were determined by a PIXE analysis using a 2.0 MeV-proton beam. In general, the mass size distribution of particulate matter was represented as a bimodal distribution. The maximum rations of S in July and December were 5.5 and 3.8 %, and they appeared in the size range of 0.47∼1.17㎛(stage No. 6 or 7) . The ratios of a S at non-separated size were 3.1 and 2.2 % in July and December, respectively, On the other hand, the maximum rations of Si in July and December were 7.0 and 5.4% and they appeared in the size range of 5.1∼30㎛(stage No. 0∼2). The ratios of Si at the non-separated size were 2.1 and 1.8% in July and December, respectively, The mass diameter of 12 elements ranged between 0.59㎛ of S and 3.20 of Fe. More than 90% of atmospheric aerosols consisted of the light elements such as C, N, O, H and Al. The soluble component was dominant in the smaller size range and the insoluble component in the larger size range. Large portions of Si. Ti and Fe existed in insoluble state. By contrast, S, Cl, Ca, Zn and Br were dissolved in water.

개별입자 분석을 위한 대기에어로졸의 시료채취법 (Sampling Method for Individual Particle Analysis of Atmospheric Aerosol)

  • 천성우;박정호
    • 한국환경과학회지
    • /
    • 제33권2호
    • /
    • pp.113-119
    • /
    • 2024
  • In this study, the most suitable sampling methods for the bimodal mass distribution characteristics and individual particle analysis of atmospheric aerosols were investigated. Samples collected in Quartz, Teflon, and Nuclepore filters were analyzed for individual particles using scanning electron microscopy with an energy-dispersive X-ray spectrometer (SEM/EDS). Then, the pore diameter of the filter and the collection flow rate were determined using the theoretical collection efficiency calculation formula for two-stage separation sample collection of coarse and fine particles. The Nuclepore filter was found to be the most suitable filter for identifying the physical and chemical characteristics of atmospheric aerosols since it was able to separate the sample and count the different sized particles better than either Quartz or Teflon. Nuclepore filters with 8.0 ㎛ and 0.4 ㎛ pores were connected in series and exposed to a flow rate of 16.7 L/min for two-stage separation sampling. The results show that it is possible to separate and collect both coarse and fine particles. We expect that the proposed methodology will be used for future individual particle analysis of atmospheric aerosols and related research.