• Title/Summary/Keyword: Atmospheric aerosol

Search Result 741, Processing Time 0.024 seconds

Aerosol Observation with Raman LIDAR in Beijing, China

  • Xie, Chen-Bo;Zhou, Jun;Sugimoto, Nobuo;Wang, Zi-Fa
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 ${\mu}m$ in dust case, a bi-mode with fine particle centered at 0.2 ${\mu}m$ and coarse particle at 2 ${\mu}m$ was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.

A Preliminary PAM Measurement of Ambient Air at Gosan, Jeju to Study the Secondary Aerosol Forming Potential (이차 에어러솔 생성 잠재력 평가를 위한 Potential Aerosol Mass (PAM) 챔버의 제주도 고산 대기분석 적용)

  • Kang, Eun-Ha;Brune, William H.;Kim, Sang-Woo;Yoon, Soon-Chang;Jung, Mu-Hyun;Lee, Mee-Hye
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.534-544
    • /
    • 2011
  • The secondary aerosol forming potential of ambient air was first measured with the Potential Aerosol Mass(PAM) chamber at Gosan supersite on Jeju island from October 22 to November 5, 2010. PAM chamber is a small flowthrough photo-oxidation chamber with extremely high OH and $O_3$ levels. The OH exposure in the PAM chamber was $(2{\pm}0.4){\times}10^{11}{\sim}(6{\pm}1.2){\times}10^{11}$ molecules $cm^{-3}$ s and was similar to 2 to 5 days of aging in the atmosphere. By periodically turning on and off UV lamps in the PAM chamber, ambient aerosol and newly formed aerosol (e.g. called as PAM aerosol) was alternately measured. Aerosol number and mass concentration in the range of 10~487 nm in diameter was measured by SMPS 3034. With UV lamps on, the nucleation mode particles smaller than 50 nm in diameters were formed. Their number concentration was greater than 105 $cm^{-3}$, leading to increase in aerosol mass by 0~8 ${\mu}gm^{-3}$. The variations of PAM and ambient aerosols were greatly dependent on characteristics of air masses such as precursor concentrations and degree of aging. This preliminary results suggests that PAM chamber is useful to assess the aerosol formation potential of air mass and its impact on the air quality. The further analysis of data with gaseous and particulate measurements will be done.

MODIS AEROSOL RETRIEVAL IN FINE SPATIAL RESOLUTION FOR LOCAL AND URBAN SCALE AIR QUALITY MONITORING APPLICATIONS

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.378-380
    • /
    • 2005
  • Remote sensing of atmospheric aerosol using MODIS satellite data has been proven to be very useful in global/regional scale aerosol monitoring. Due to their large spatial resolution of $10km^2$ MODIS aerosol optical thickness (AOT) data have limitations for local/urban scale aerosol monitoring applications. Modified Bremen Aerosol Retrieval (BAER) algorithm developed by von Hoyningen-Huene et al. (2003) and Lee et al. (2005) has been applied in this study to retrieve AOT in fe resolutions of $500m^2$ over Korea. Look up tables (LUTs) were constructed from the aerosol properties based on sun-photometer observation and radiation transfer model calculations. It was found that relative error between the satellite products and the ground observations was within about $15\%$. Resulting AOT products were correlated with surface PMIO concentration data. There was good correlation between MODIS AOT and surface PM concentration under certain atmospheric conditions, which supports the feasibility of using the high-resolution MODIS AOT for local and urban scale air quality monitoring

  • PDF

A Study on the Characteristics of Urban Aerosol Concentration in the Size Range of 0.01~$1.0\mu\textrm{m}$ (도시 대기 Aerosol의 입자직경 0.01~$1.0\mu\textrm{m}$ 범위의 농도변화 특성)

  • 김필수;김윤장;이양호;조숙현;안승태
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.41-50
    • /
    • 1986
  • Urban aerosol concentrations in the size range of $0.01 \sim 1.0 \mum$ have been measured by using an electrical aerosol analyzer from May through October, 1984. The total diurnal variation of the number concentration indicates that a minimum value is observed at 3 hr and a sharp increase is noticed early in the morning with a subsequent slow and continuous increase from around 7 hr until 20 hr. After that it is decreased to reach its minimum by dawn. However, both surface and volume concentrations have shown that their first maxima at 8 hr and their second at about 20 hr simultaneously. It is found that the aerosol number is mainly governed by the particles in the size range of $0.01 \sim 0.1 \mum$, while most volume is in $0.1 \sim 1.0 \mum$ size range. It is known fact that particles of $0.1 \sim 1.0 \mum$ size range affect the visibility reduction in the atmosphere. The monthly variation of aerosol concentration remarks its minimum in summer. The main factors influencing the aerosol concentration are emission of autoexhausts, various processes of production and removal, and meteorological parameters.

  • PDF

Study of Retrieving the Aerosol Size Distribution from Aerosol Optical Depths (에어로졸 광학깊이를 이용한 에어로졸 크기분포 추출 연구)

  • Kim, Dukhyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.139-148
    • /
    • 2018
  • In this study, aerosol size distributions were retrieved from aerosol optical depth measured over a range of 10 wavelengths from 250 to 1100 nm. The 10 wavelengths were selected where there is no absorption of atmospheric gases. To obtain the solar spectrum, a home-made solar tracking system was developed and calibrated. Using this solar tracking system, total optical depths (TODs) were extracted for the 10 wavelengths using the Langley plot method, and aerosol optical depths (AODs) were obtained after removing the effects of gas absorption and Rayleigh scattering from the TODs. The algorithm for retrieving aerosol size distributions was suggested by assuming a bimodal aerosol size distribution. Aerosol size distributions were retrieved and compared under various arbitrary atmospheric conditions. Finally, we found that our solar tracking spectrometer is useful for retrieving the aerosol size distribution, even though we have little information about the aerosol's refractive index.

Impact of the Smoke Aerosol from Russian Forest Fires on the Atmospheric Environment over Korea during May 2003 (2003년 5월 러시아지역에서 발생한 산불로 인한 스모크 에어로졸 플룸의 영향)

  • Lee, Kwon-Ho;Kim, Jeong-Eun;Kim, Young-Joon;Kim, Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.603-613
    • /
    • 2004
  • Extensive forest fires occurred across the border in Russia. particularly east of Lake Baikal between the Amur and Lena rivers in May 2003. These forest fires released large amounts of particulates and gases into the atmosphere. resulting in adverse effects on regional air quality and the global radiation budget. Smoke pollution from the Russian fires near Lake Baikal was sometimes transported to Korea through Mongolia and eastern China. In this study ground based radiation (visible and UV-B) data measured during May 2003 at Seoul and Kwangju were analyzed to estimate smoke aerosol impacts on solar radiation. Surface criteria air pollutants ($PM_{10}$, CO, $O_3$) data were also obtained from National Institute of Environmental Research (NIER) during smoke aerosol event period (19 May~24 May 2003). Large Aerosol Optical Depth (AOD) 1.0~3.0 was observed during this period due to the influence of the long range transport of smoke aerosol plume from the Russian fires, resulting in short-wavelength direct aerosol radiative forcing of -90~ -200W/$m^2$. These smoke aerosol plume caused decrease in surface UV-B radiation up to 80% and increase in PM_(10) concentration up to 200${\mu}g/m^3$ exceeding the 24 hour ambient air quality standard.

Formation and Growth of Atmospheric Aerosols by Water Vapor Reactions in an Indoor Smog Chamber (스모그 챔버에서 수분 반응에 의한 대기 에어로졸의 생성 및 성장)

  • Kim Min Cheol;Bae Gwi-Nam;Moon Kil-Choo;Park Ju-Yeoun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.161-174
    • /
    • 2004
  • Aerosol formation and growth by water vapor reactions were investigated in a 2.5 -㎥ indoor smog chamber filled with the unfiltered ambient air. The relative humidity of test ambient air was elevated at 59~64% or 84~88% by adding water vapor. The aerosol number size distribution and the concentrations of $O_3$, NO, NO$_2$, and SO$_2$ were measured during the experiments. The $O_3$ and NO$_2$ gases were well reacted with the water vapor at high relative humidity of 84~88%, and the reaction rates of these gases seemed to be decreased at low relative humidity of 59~64%. The formation and condensational growth phenomena of ambient aerosols by water vapor reactions were observed in a Teflon bag, depending strongly on the initial particle size distribution. The water vapor reactions might be affected by the contents of oxidants produced by photochemical reactions under sunlight.

Sensitivity of Aerosol Optical Parameters on the Atmospheric Radiative Heating Rate (에어로졸 광학변수가 대기복사가열률 산정에 미치는 민감도 분석)

  • Kim, Sang-Woo;Choi, In-Jin;Yoon, Soon-Chang;Kim, Yumi
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • We estimate atmospheric radiative heating effect of aerosols, based on AErosol RObotic NETwork (AERONET) and lidar observations and radiative transfer calculations. The column radiation model (CRM) is modified to ingest the AERONET measured variables (aerosol optical depth, single scattering albedo, and asymmetric parameter) and subsequently calculate the optical parameters at the 19 bands from the data obtained at four wavelengths. The aerosol radiative forcing at the surface and the top of the atmosphere, and atmospheric absorption on pollution (April 15, 2001) and dust (April 17~18, 2001) days are 3~4 times greater than those on clear-sky days (April 14 and 16, 2001). The atmospheric radiative heating rate (${\Delta}H$) and heating rate by aerosols (${\Delta}H_{aerosol}$) are estimated to be about $3\;K\;day^{-1}$ and $1{\sim}3\;K\;day^{-1}$ for pollution and dust aerosol layers. The sensitivity test showed that a 10% uncertainty in the single scattering albedo results in 30% uncertainties in aerosol radiative forcing at the surface and at the top of the atmosphere and 60% uncertainties in atmospheric forcing, thereby translated to about 35% uncertainties in ${\Delta}H$. This result suggests that atmospheric radiative heating is largely determined by the amount of light-absorbing aerosols.

Mass Transfer of Aerosol onto Spherical Collector at Low Knudsen Number (저 누드센 영역에서 구형 포집체상의 에어로졸 물질 전달)

  • Jung, Chang-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.547-555
    • /
    • 2005
  • In this study, an analytical expression for aerosol mass transfer at spherical collector in the low Knudsen number region was obtained. Happel's zero shear stress cell model was extended in the low Knudsen number region and the result was compared with numerical solution results. The zero vorticity model based on the Kuwabara's cell model was also extended in the low Knudsen number region and compared with Happel's results. The results showed that both analytic and numerical solution agree very well with each other in low Knudsen number region. Happel's zero shear stress model also agrees with Kuwabara's zero vorticity model without significant loss of accuracy. The obtained solution converges to the original solution of Lee et al. (1999) when Knudsen number approaches to zero. Subsequently, this study derived most general type of analytic solution for aerosol mass transfer of spherical collector including the finite Knudsen number region.

Aerosol Losses in a 100L $Tedlar^{(R)}$ Bag

  • Oh, Sewon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E2
    • /
    • pp.61-68
    • /
    • 2004
  • Aerosol losses in a 100L Tedlar$^{(R)}$ bag were investigated for the aerosols with number median diameter of 0.05 ${\mu}{\textrm}{m}$ and number concentration of 6.4 ${\times}$ 10$^4$ cm$^{-3}$ . Over a 1 hr period, loss of particles in the bag is apparent, and the volume decrease with time is significant. The number concentration, surface area, and volume concentration of the aerosols decreased to 34, 50, and 52% of the initial value in 30 min, respectively. This indicates that deposition to the walls was the main loss process for aerosols in the Tedlar$^{(R)}$ bag. Theoretical calculations showed that coagulations and deposition by diffusion and gravitational sedimentation would not change aerosol characteristics significantly, and the electrical force was the dominant loss process for particles in the Tedlar$^{(R)}$ bag over a 1 hr period.eriod.