• Title/Summary/Keyword: Atmospheric Dispersion

Search Result 363, Processing Time 0.023 seconds

Radiological Dose Analysis to the Public Resulting from the Operation of Daedeok Nuclear Facilities (대덕부지 원자력관련시설 운영에 따른 주민피폭선량 현황분석)

  • Jeong, Hae Sun;Kim, Eun Han;Jeong, Hyo Joon;Han, Moon Hee;Park, Mi Sun;Hwang, Won Tae
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.38-45
    • /
    • 2014
  • This paper describes the results of assessment of radiological dose resulting from operation of the Daedeok nuclear facilities including the HANARO research reactor, which has been performed to assure whether or not to comply with the regulation standards of the radioactive effluents releases. Based on the meteorological data and the radiation source term, the maximum individual doses were evaluated from 2010 to 2012. The atmospheric dispersion and the deposition factors of gaseous effluents were calculated using the XOQDOQ computer code. ENDOS-G and ENDOS-L code systems were also used for maximum individual dose calculation from gaseous and liquid effluents, respectively. The results were compared with the regulation standards for the radioactive effluents presented by the Nuclear Safety and Security Commission (NSSC). The effective doses and the thyroid doses of the maximum individual were calculated at the maximum exposed point in the Daedeok site, and contributions of exposure pathways to the radiological doses resulting from gaseous and liquid radioactive effluents were evaluated at each facility of the Daedeok site. As a result, the maximum exposed age was analysed to be the child group, and the operation of HANARO research reactor had a major effect more than 90% on the individual doses. The main exposure pathways for gaseous radioactive effluent were from ingestion and inhalation. The effective doses and the thyroid doses were considerably influenced by tritium and iodine, respectively. The gaseous radioactive effluents contributed more than 90% on the total doses, whereas the contributions of the liquid radioactive effluents were relatively low. Consequently, the maximum individual dose due to radioactive effluents from the nuclear facilities within the Daedeok site were less than 3% of the regulation standard over 3 years; therefore, it can be concluded that radioactive effluents from the nuclear facilities were well managed, with the radiation-induced health detriment for residents around the site being negligible.

Carbon Monoxide Dispersion in an Urban Area Simulated by a CFD Model Coupled to the WRF-Chem Model (WRF-Chem 모델과 결합된 CFD 모델을 활용한 도시 지역의 일산화탄소 확산 연구)

  • Kwon, A-Rum;Park, Soo-Jin;Kang, Geon;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.679-692
    • /
    • 2020
  • We coupled a CFD model to the WRF-Chem model (WRF-CFD model) and investigated the characteristics of flows and carbon monoxide (CO) distributions in a building-congested district. We validated the simulated results against the measured wind speeds, wind directions, and CO concentrations. The WRF-Chem model simulated the winds from southwesterly to southeasterly, overestimating the measured wind speeds. The statistical validation showed that the WRF-CFD model simulated the measured wind speeds more realistically than the WRF-Chem model. The WRF-Chem model significantly underestimated the measured CO concentrations, and the WRF-CFD model improved the CO concentration prediction. Based on the statistical validation results, the WRF-CFD model improved the performance in predicting the CO concentrations by taking complicatedly distributed buildings and mobiles sources of CO into account. At 04 KST on May 22, there was a downdraft around the AQMS, and airflow with a relatively low CO concentration was advected from the upper layer. Resultantly, the CO concentration was lower at the AQMS than the surrounding area. At 15 KST on May 22, there was an updraft around the AQMS. This resulted in a slightly higher CO concentration than the surroundings. The WRF-CFD model transported CO emitted from the mobile sources to the AQMS measurement altitude, well reproducing the measured CO concentration. At 18 KST on May 22, the WRF-CFD model simulated high CO concentrations because of high CO emission, broad updraft area, and an increase in turbulent diffusion cause by wind-shear increase near the ground.

IGRINS Design and Performance Report

  • Park, Chan;Jaffe, Daniel T.;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Yu, Young Sam;Kaplan, Kyle;Mace, Gregory;Kim, Hwihyun;Lee, Jae-Joon;Hwang, Narae;Kang, Wonseok;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.90-90
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is the first astronomical spectrograph that uses a silicon immersion grating as its dispersive element. IGRINS fully covers the H and K band atmospheric transmission windows in a single exposure. It is a compact high-resolution cross-dispersion spectrometer whose resolving power R is 40,000. An individual volume phase holographic grating serves as a secondary dispersing element for each of the H and K spectrograph arms. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{{\prime}{\prime}}{\times}15^{{\prime}{\prime}}$. IGRINS has a plate scale of 0.27" pixel-1 on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with a SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized ($0.96m{\times}0.6m{\times}0.38m$) rectangular Dewar. The fabrication and assembly of the optical and mechanical components were completed in 2013. From January to July of this year, we completed the system optical alignment and carried out commissioning observations on three runs to improve the efficiency of the instrument software and hardware. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present the instrumental performance test results derived from the commissioning runs at the McDonald Observatory.

  • PDF