• Title/Summary/Keyword: Atmosphere temperature

Search Result 2,372, Processing Time 0.038 seconds

A Study on the Removal Reaction Characteristics of Sulfur Dioxide (대기오염 물질인 $SO_2$ 제거반응 특성 연구)

  • 강순국;정명규
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.41-52
    • /
    • 1995
  • The effects of reaction temperature, SO2 and CO2 concentration in an air gas stream, particle sizes of limestone on the reactivity and capacity of SO2 removal have been determined in a thermogravimetric analyser(TGA). The apparent reaction order of sulfation reaction of pre-calcined lime(CaO) with respect to SO2 is found to be close to unity. The apparent activation energies are found to be 17,000 kcal/kmol for sulfation of pre-calcined lime and 19,500 kcal/kmol for direct sulfation of limestone(CaCO3). The initial sulfation reaction rate of pre-calcined lime increases with increasing temperature, whereas the sulfur capture capacity exhibits a maximum value at 90$0^{\circ}C$. In direct sulfation of limestone, sulfation reactivity and sulfur capature capacity of sorbent increase with increasing temperature and decreasing CO2 concentration in a gas bulk stream. The main pare of pre-calcined lime is shifted to the larger pore sizes and pore volume decreases with increasing sulfation time and temperature. The surface area of lime decreases with increasing calcination temperature under an air atmosphere, whereas is yearly constant under a CO2(5, 10%) atmosphere in a gas stream.

  • PDF

Studies of the Fusibility of Coal Ashes in Oxidizing and Reducing Conditions (산화성 및 환원성분위기에서 석탄회분의 용융성)

  • Park, Chu-Sik;Lee, Shi-Hun;Choi, Sang-Il;Yang, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.179-190
    • /
    • 1997
  • To study the effects of chemical composition on the fusion temperatures of coal ashes, the chemical composition, mineral matter, and fusion temperature were studied with 54 kinds of coal ash samples including Korean anthracite coals. CaO, MgO and $Fe_2O_3$ were observed to be major fluxing elements in reducing and oxidizing atmosphere. The fluxing effect of $Fe_2O_3$ was increased more in reducing atmosphere. In a base/acid ratio, the fusion temperature decreased with increasing amounts of basic components. Nevertheless, the correlation between a fusion temperature and base/acid ratio was not shown well in a higher ratio of $Fe_2O_3/CaO$. The differences of fusion temperatures between oxidizing and reducing atmosphere showed close relationship with $SiO_2/Al_2O_3$ ratio rather than with $Fe_2O_3$ contents. Multiple regression was used to predict the fusion temperature of coal ashes, and it was established that the major predictors in oxidizing atmosphere were Base/Acid, $Fe_2O_3/CaO$, $SiO_2/Al_2O_3$, and $(SiO_2/A1_2O_3){\cdot}(Base/Acid)$ and Base/Acid, $Fe_2O_3/CaO$, $SiO_2$, and $TiO_2$ were major ones in reducing atmosphere.

  • PDF

Compensation for The Solar Radiation Effect of Radiosonde's Temperature Sensor Using Solar Panel (솔라패널을 이용한 라디오존데 온도센서의 일사보정)

  • Park, Myeong-Seok;Lee, Jin-Wook;Jeung, Se-Jin;Jang, Jea-Won
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.283-294
    • /
    • 2019
  • For the upper air observations, a temperature measurement using radiosonde is a common method, and the compensation of solar radiation effects in the radiosonde temperature sensor is an important factor. In this paper, we present various experiments and compensation methods of the radiosonde temperature sensor to overcome the errors caused by the movement of the radiosonde rotation, etc. The methods and procedures of this study are as follows. First, we used the solar simulator to analyze the temperature variation and solar effect of the temperature sensor in the radiosonde according to the insolation. We also analyzed the temperature variation and solar effect of the temperature sensor according to the incident angle between the solar simulator and radiosonde. Second, we measured and analyzed solar radiation absorbed by solar cells attached to radiosonde. Third, we present combined compensate solution of the first and the second experiment results, to overcome errors caused by insolation effects in the radiosonde temperature sensors. Fourth, we compared that the reference temperature in similar environment with the upper air conditions, to verify the new radiated compensation performance of the radiosonde temperature sensor. Finally, the radiosonde fabricated in this study was raised to the atmosphere, and the laser correction algorithm proposed through experiments was reviewed. As a result of the radiosonde SRS-10 produced in this study, the temperature deviation from Vaisala RS92 was $0.057^{\circ}C$ in nighttime observation, $0.17^{\circ}C$ in daytime observation, It is expected that the GRUAN under WMO will be able to obtain a high test rating of 5.0.

Tribological Behaviour of $WS_2$Solid Lubricant ($WS_2$ 고체윤활제의 마찰.마모 거동)

  • 신동우;김인섭;윤대현;김경도;김성진;정진수
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.35-41
    • /
    • 1998
  • The $WS_2$ solid lubricant synthesized through the vapour phase transport method was coated on the commercial bearing steel (SUJ 2) substrate, and the tribological behaviour of the lubricant was investigated using a ball-on-disk type tester. The $WS_2$ powder was spray-coated at room temperature using compressed air, and the change of friction coefficient was examined in various conditions, i.e., specimen configuration, atmosphere (air and nitrogen), applied load and rotating speed. $WS_2$ coated ball and disk showed the optimum friction coefficient of 0.07 and wear life of 45,000 cycles in the nitrogen atmosphere under 0.3 kgf and 100 rpm, whereas relatively high coefficient of 0.13 and reduced wear life of 4,000 cycles were observed in air atmosphere. The effect of rotating speed on the friction coefficient was not observed both in nitrogen and in air atmospheres. This confirmed that the spray-coated $WS_2$ solid lubricant was effective in reducing the friction coefficient and improving wear life in nitrogen atmosphere, and the oxygen and moisture existing in air could seriously deteriorate the lubrication effect of $WS_2$ coating layer.

Analysis of Propagation Characteristics by Statistical Analysis in Domestic Atmospheric Environments (국내 대기 환경의 통계적 특성 분석을 통한 전파 특성 분석)

  • Choi, Moon-Young;Lee, Gil-Jae;Kim, Hyun-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.698-705
    • /
    • 2008
  • When electromagnetic waves propagate through atmosphere, waves are affected by various factors. Atmosphere normally consists of different molecular species, water vapours, rain, fog, snow and small suspended particles called aerosols. The distributions of atmosphere molecules, water vapours, rain rate, snowfall and aerosol are dependent on geometrical regions or environment. In order to predict propagation characteristics in atmospheric environment, statistical analysis of the relevant parameters such as temperature, humidity, atmospheric pressure, wind speed, areosol and rainfall is crucial. In this paper, we performed a long-term statistical analysis for the atmospheric parameters in domestic environments and analyzed the propagation characteristics through atmosphere based on that.

Enhanced Hydrogen Gas Sensing Properties of ZnO Nanowires Gas Sensor by Heat Treatment under Oxygen Atmosphere (산소 분위기 열처리에 따른 ZnO 나노선의 상온 영역에서의 수소가스 검출 특성 향상)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.125-130
    • /
    • 2017
  • ZnO nanowires were synthesized and annealed at various temperatures of $500-800^{\circ}C$ in oxygen atmosphere to investigate hydrogen gas sensing properties. The diameter and length of the synthesized ZnO nanowires were approximately 50-100 nm and a few $10s\;{\mu}m$, respectively. $H_2$ gas sensing performance of the ZnO nanowires sensor was measured with electrical resistance changes caused by $H_2$ gas with a concentration of 0.1-2.0%. The response of ZnO nanowires at room temperature to 2.0% $H_2$ gas is found to be two times enhanced by annealing process in $O_2$ atmosphere at $800^{\circ}C$. In the current study, the effect of heat treatment in $O_2$ atmosphere on the gas sensing performance of ZnO nanowires was studied. And the underlying mechanism for the sensing improvement of the ZnO nanowires was also discussed.

스퍼터링 법으로 증착한 CdS 박막의 광전도도 특성 평가

  • Heo, Seong-Gi;Jang, Dong-Mi;Choe, Myeong-Sin;An, Jun-Gu;Seong, Nak-Jin;Yun, Sun-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.81-81
    • /
    • 2008
  • Applications of CdS films in this study are to exhibit a high conductivity when they are exposed at light with visible wavelength and sequentially to show a low conductivity in dark state. For this purpose, CdS films should have a high photosensitivity, still maintaining a high conductivity at a visible light. In this study, CdS films were prepared at room temperature on glass substrates by rf magnetron sputtering. In order to increase the photo-conductivity in visible light, various defect levels should be located within the CdS band gap. In order to nucleate the defect sites within the CdS band gap, CdS films were deposited on glass substrates at room temperature using various $H_2$/(Ar+$H_2$) flow ratios by an rf magnetron sputtering. Through the investigation of the structural and photoconductive properties of CdS films by an addition of hydrogen, the relationship between photo- and dark-resistance in CdS films was investigated in detail. 200-nm-thick CdS films for photoconductive sensor applications were prepared at various $H_2$/(Ar+$H_2$) flow ratios on glass substrates at room temperature by rf magnetron sputtering. Sulfur concentration in CdS films crystallized at room temperature with (002) preferred orientation depends directly on the hydrogen atmosphere and the surface roughness of the films gradually increases with increasing hydrogen atmosphere. Films deposited at 8% of $H_2$/(Ar+$H_2$) exhibit an abrupt decrease of dark- and photo-resistance, showing a low photo-sensitivity ($R_{dark}/R_{photo}$). Onthe other hand, films deposited at a hydrogen atmosphere of 42% exhibit a photo-sensitivity of $5\times10^3$, maintaining a photo-resistance of an approximately $2\times10^4\Omega$/square. The dark- and photo-resistance values of CdS films were related with a composition, surface roughness, and defect sites within the band gap.

  • PDF

An Experimental Study on Iron Recovery from Steelmaking Slag by Microwave Heating (마이크로웨이브 가열(加熱)을 이용(利用)한 제철(製鐵) 슬래그 중 철(鐵) 회수(回收)에 관한 실험적(實驗的) 연구(硏究))

  • Kim, Tae-Young;Kim, Eun-Ju;Shin, Min-Soo;Lee, Joon-Ho
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • In order to understand the microwave carbothermic reduction of steelmaking slag to recover Fe, the effects of gas atmosphere and carbon addition on the carbothermic reduction behavior of CaO-$SiO_2$-FeO slag were investigated. It was found that the maximum temperature and the reduction rate were higher in air than in nitrogen atmosphere. In addition, under air atmosphere, the maximum temperature and the reduction rate were increased by increasing the amount of additive carbon. When the carbon equivalent is 5, the maximum temperature reached as high as 1800K and the reduction rate was approximately 90%. As the Carbon equivalent increased further, the maximum temperature and the reduction rate did not change.

Effects of an ice pack and sulfur generating pad treatment for home delivery on the quality of 'Duke' blueberry fruits

  • Lim, Byung-Seon;Choi, Mi-Hee;Lee, Jin-Su
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.811-821
    • /
    • 2018
  • This study focused on the improvement of blueberry delivery service using pre-cooled ice and $SO_2$ pads to prevent an increase in the fruit temperature as well as decay. To maintain the fruit quality during low temperature storage, the effect of a $SO_2$ pad and modified atmosphere packaging was also examined. Harvested blueberries were precooled at $15^{\circ}C$, sorted, and packaged. And the fruits were placed in a similar environment as that for the parcel service. Part of the fruits were stored at $0^{\circ}C$ for long term storage. The air temperature in the delivery box increased along with an increase in the simulated delivery time regardless of the treatment. However, the rate of temperature increase was lower in the ice pad treatment. No significant difference was not found after 48 h. The oxygen concentration in the box ranged between 10.5 - 14.5% in the ice pad treatment, which was higher than that of the untreated control (7.5 - 11.9%) whereas the $CO_2$ concentration was lower in the ice pad treatment. No differences were found in the occurrence of off-flavor, decay, and sensory quality loss during the 48 hours of the parcel service simulation. The combined treatment of the $SO_2$ pad and modified atmosphere packaging (MAP) using a perforated film increased the shelf-life of the blueberry fruits, the overall quality such as firmness, and the soluble solid content was not different between the treatments except for the decay incidence. No decayed fruit was found in the combined treatment. However, the percentage of decayed fruit in the control was 25% on day 15 of storage and 75% on day 33 of storage, respectively.

Half lives of Gaseous Organochlorine Pesticides in Atmosphere (대기 중에서 가스상 유기염소계 살충제의 반감기)

  • Choi, Min-Kyu;Chun, Man-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.177-184
    • /
    • 2007
  • Gaseous organochlorine pesticides (OCPs : heptachlor epoxide, p, p'-DDE, ${\gamma}-HCH,\;{\alpha}-chlordane,\;{\gamma}-chlordane$ and trans-nonachlor) concentration was measured using PUF high volume sampler from June, 2000 to June, 2002 in the semi-rural atmosphere. The OCPs concentration in atmosphere, which is estimated by the slope (m) of Clausius-Clapeyron equation and phase-transition energy $({\Delta}H)$, was influenced by revolatilization from environmental matrix (soil, water and tree leaves) and a long range transportation of air mass. But the former affected OCPs concentration more than the latter. The degradation rate constants (k) of OCPs calculated using multiple regression analysis and revised standard temperature method were in good agreement each other. The value of k of ${\gamma}-HCH$ was very low as -0.0007, but the range of k of other components were $-0.00l8{\sim}-0.0038$. The half-life $({\tau})$ which was calculated by k of ${\gamma}-HCH$ was 2.6 years-the longest one, but that of heptachlor epoxide was in 0.5 year-the shortest one. $({\tau})\;of\;{\alpha}-chlordane,\;{\gamma}-chlordane$ and trans-nonachlor in technical chlordane was 1.0, 1.1 and 0.7 year respectively.