• Title/Summary/Keyword: Atmosphere sintering

Search Result 439, Processing Time 0.027 seconds

Effects of Powder Property and Sintering Atmosphere on the Properties of Burnable Absorber Fuel : I. $UO_2-Gd_2O_3$ Fuel

  • K. W. Song;Kim, K. S.;H. S. Yoo;Kim, J. H.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.171-176
    • /
    • 1997
  • UO$_2$-Gd$_2$O$_3$fuel has been sintered to study the effect of powder property and sintering atmospheres on densification and microstructure. Three types of powders have been used; AUC-UO$_2$ powder and ADU-UO$_2$ powder were mixed with Gd$_2$O$_3$ Powder, and co-milled AUC-UO$_2$ and Gd$_2$O$_3$ powder. UO$_2$-(2, 5, 10)wt% Gd$_2$O$_3$pellets have been sintered at 168$0^{\circ}C$ for 4 hours in the mixture of H$_2$ and $CO_2$ gases, of which oxygen potential has been controlled by the ratio of $CO_2$ to H$_2$ gas. Densities of UO$_2$-Gd$_2$O$_3$ fuel pellets are quite dependent on powder types, and UO$_2$-Gd$_2$O$_3$ fuel using co-milled UO$_2$ powder yields the highest density. A long range homogeneity of Gd is determined by powder mixing. As the oxygen potential of sintered atmosphere increases, the sintered densities of UO$_2$-Gd$_2$O$_3$ pellets decrease but grain size increases. In addition, (U, Gd)O$_2$ solid solution becomes more homogeneous. The UO$_2$-Gd$_2$O$_3$fuel having adequate density and homogeneous microstructure can be fabricated by co-milling powder and by high oxygen potential.

  • PDF

The mechanism of black core formation (블랙코어 형성 메커니즘)

  • Park Jiyun;Kim Yootaek;Lee Ki-Gang;Kang Seunggu;Kim Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.208-215
    • /
    • 2005
  • The 10mm diameter aggregates made of clay, carbon and $Fe_2O_3$ were prepared to investigate the mechanism of black core formation. The specific gravity, absorption rate, percent of black core area, fracture strength, total Fe analysis, and XRF were measured at various compositions, sintering temperatures, sintering times, sintering atmospheres, and sintering methods. Small addition of $Fe_2O_3$ did not affect physical properties of the aggregates; however, the percent of black core area increased with increasing carbon contents and increasing sintering temperature. Specific gravity of the aggregates decreased and the water absorption ratio increased with increasing percent of black core area. The aggregates sintered at oxidation atmosphere showed clear border between shell and black core area. Hence, the aggregates sintered at reduction atmosphere showed only black core area in the cross-section of the aggregates. The specific gravity of the aggregates sintered at reduction atmosphere increased with increasing carbon contents and that was the lowest of all comparing other aggregates sintered at different atmospheres. Adsorption rate increased with increasing carbon contents at all atmospheres. The fast sintered aggregates showed lower specific gravity, higher absorption rate, and more black core area than the normally sintered aggregates. It was turned out that the aggregates having more black core area showed higher fracture strength than that of aggregates with no black core area. From the total Fe analysis, the concentration of Fe and FeO was higher at black core area than at shell. Because the concentration of $Fe_2O_3$ in the shell was higher than other area, the color of the shell appeared red. It was also turned out from the XRF analysis that carbon was exist only at black core area.

Nb doped strontium titanate single crystal growth by floating zone method (Floating zone법에 의한 Nb를 첨가한 strontium titanate 단결정 성장)

  • Jeon, Byong-Sik;Cho, Hyun;Orr, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.215-222
    • /
    • 1995
  • Nb doped strontium titanate single crystals were grown by the floating zone method. The doping amount of $Nb_2O_5$ was 0.2 wt %. Those crystals were grown in air and N z atmosphere and the growth rate was 5 mmlhr and rotation speed of upper and lower shaft was 30 rpm. The shapes of melt - feed rod interface depending on sintering temperatures were observed. In air atmosphere, the flow rate of air was 1.5 ${\ell}/min$ and in $N_2$ atmosphere, that of $N_2$ gas was 0.5 ${\ell}/min$. As grown crystals were analyseQ by XRD, Laue back - reflection and chemical etching. After annealing in $N_2$ atmosphere, resistivities of crystals were measured and the activation energies of each samples were calculated.

  • PDF

A Study on the Fabrication of Porous Sintered Materials for Glass Mold (유리 금형용 다공질 소결재의 제조에 관한 연구)

  • Jang Tae-Suk;Lim Tae-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.468-472
    • /
    • 2005
  • In order to prevent adhering of molten glass on a mold wall, the wall is swabbed with lubricant oil before forming. However, the swabbing process can be removed from the entire processes of the glass forming if the mold wall is made of a porous sintered material. The purpose of the present study is to manufacture a sintered material(having a sintered density of $85{\~}90\%$)which is the most appropriate into. plane material for a glass mold. For the research, SUS310L-based coarse powder (${\~}150{\mu}m$) and SUS420J2-based fine powder ($40{\~}50{\mu}m$) were used for the compact materials, and effects of compaction pressure and sintering condition(atmosphere, temperature) were investigated. The results obtained were as fellows. (1) By means of solid phase sintering, a desired sintering density could not be achieved in any case when using a 310L-based powder having a large particle size. (2) When sintering green compacts(compaction pressure of $2ton/cm^2$) in a commercial vacuum furnace(at $1300^{\circ}C$ for 2 hours), the sintered compacts had densities of $6.2g/cm^3(79\%)$ for 310L + 0.03$\%$B, $6.6g/cm^3 (86\%)$ for 420J2, $7.3g/cm^3(95\%)$ for 420J2+(0.03)$\%$B, and $7.6g/cm^3(99\%)$ for 420j2+(0.06)$\%$B, respectively. As a result, it is regarded that sintered compacts having a desired porosity may be achieved by vacuum sintering the 420J2-based powder (low pressure compaction) and the 310L+0.03$\%$B-based powder (high pressure compaction).

  • PDF

Mössbauer Effect on LiFePO4 by Changing the Sintering Temperature and as Charged Cathode in Lithium Ion Battery (소결온도 변화와 충전된 리튬이온 전지 LiFePO4 정극에 대한 뫼스바우어 효과)

  • Kim, T.H.;Kim, H.S.;Im, H.S.;Yu, Y.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2007
  • In this paper, we composed the $LiFePO_4$ for the reversible use as the replacement material of the Li ion batteries and confirmed the good quality of the structure of the samples with the sintering temperature $675^{\circ}C,\;750^{\circ}C,\;and\;800^{\circ}C$ for 30 hours at nitrogen atmosphere. We also investigated the size of the particles through SEM picture and the change of the sintering temperature and the $Fe^{+3}$ content after charging the materials with 1 V, 160 mA and 3 V, 40 mA for 3 hours by Mossbauer spectroscopy. Also we can observe the increase on the $Fe^{+3}$ content at the charge condition and the increase of the amount ratio of the $Fe^{+3}$ ion only in sintering temperature $675^{\circ}C$ according to the increase of the electric charge. We cannot observe the change of the $Fe^{+3}$ ion in sintering temperature $800^{\circ}C$ after charging.

Formation of TiB2-SiC Ceramics from TiB2-Polycarbosilane Mixtures (Polycarbosilane을 이용한 TiB2-SiC 세라믹의 형성)

  • Kang, Shin-Hyuk;Lee, Dong-Hwa;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.544-548
    • /
    • 2008
  • The formation of $TiB_2-SiC$ ceramics from $TiB_2$-Polycarbosilane (PCS) mixtures was investigated. The powder mixture of $TiB_2$ with PCS was pressed at $300^{\circ}C$ with 200 MPa and sintered at $1700{\sim}2000^{\circ}C$ for 1 h in a flowing Ar atmosphere. The sintered density of $TiB_2$ with PCS is 93.7% after sintering at $2000^{\circ}C$ for 1 h, which is slightly smaller than that of the specimen without PCS. The microstructure of $TiB_2$ with PCS consists of small and uniform $TiB_2$ particles with well dispersed SiC particles derived from PCS. It is believed that the addition of PCS was effective to suppress the grain growth of $TiB_2$.

Piezoelectric properties of (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ ceramics with composition (조성비에 따른 (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ 세라믹스의 압전 특성)

  • Lee, Young-Hie;Lee, Dong-Hyun;Bae, Seon-Gi;Lee, Sang-Chul;Choi, Dal-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1436-1437
    • /
    • 2011
  • (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ lead free piezoelectric ceramics were synthesized to enhance the piezoelectric properties of (Na,K)$NbO_3$. The synthesis and sintering method were the conventional solid state reaction method and general sintering method in air atmosphere. We report the improved piezoelectric properties in the perovskite structure composed of the NKN and BZT ceramics. We investigated the effects of NKN, BZT on the structural and electrical properties of the NKN-BZT ceramics. The NKN-BZT ceramics show good performance with piezoelectric constant $d_{33}$=155pC/N. The results reveal that (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ ceramics are promising candidate materials for lead-free piezoelectric application.

  • PDF

A Study on the Densifcation of Stellite Fine Powder for Iniection Molding (사출성형용 Stellite미분말의 소결 치밀화에 관한 연구)

  • 임태환
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.113-121
    • /
    • 1997
  • The densification of the compacts of Co+32%Cr+20%W+l.5%C, Co+32%Cr+20%W+3.0%C and Co+32%Cr+20%W+4.5%C sintered under $H_2$ gas or vacuum was investigated. The effect of V and B addition on the densification was also investigated. The densification of these compacts were always incomplete regardless of sintering atmosphere, temperature and time. The amounts of oxygen and carbon in compacts sintered in $H_2$ for 3.6ks at 1523K were 0.105~0.160 mass% and 0.33~0.89 mass%, respectively. And those in vacuum were 0.028~0.032% and 0.957~4.08%, respectively. Relative density(Ds) of Co+29%Cr+17%W+3.0%C compact containing 6%V and Co+32%Cr+20%W+2.97%C compact containing 0.03%B were 99 and 100%, respectively, indicating complete densification by solid phase sintering. Victors hardness of sintered compacts containing 6%V or 0.03%B were 632 and 568, showing 50~60% increase in comparison to those without V or B. These results can be explained in terms of oxidation/reduction of oxides and equilibrium pressure of CO in isolated pore, instead of presence of liquid formation and grain boundary separation from pores due to large grain growth.

  • PDF

Metal Injection Molding of Nanostructured W-Cu Composite Powders Prepared by Mechanical Alloying (기계적 합금방법으로 제조한 극초미세 조직의 W-Cu 복합분말의 금속사출성형 연구)

  • 김진천
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.145-153
    • /
    • 1998
  • W-Cu alloy is attractive to thermal managing materials in microelectronic devices because of its good thermal properties. The metal injection molding (MIM) of W-Cu systems can satisfy the need for mass production of the complex shaped W-Cu parts in semiconductor devices. In this study, the application of MIM process of the mechanically alloyed (MA) W-Cu composite powders, which had higher sinterability were investigated. The MA W-Cu powders and reduction treated (RT) powders were injected by using of the multicomponent binder system. The multi-stage debinding cycles were adopted in $N_2$ and $H_2$ atmosphere. The isostatic repressing treatment was carried out in order to improve the relative density of brown parts. The brown part of RT W-Cu composite powder sintered at 110$0^{\circ}C$ had shown the higher sinterability compared to that of MA powder. The relative sintered density of all specimens increased to 96% by sintering at 120$0^{\circ}C$ for 1 hour. The relationship between green density and the sintering behavior of MA W-Cu composite powder was analyzed and discussed on the basis of the nanostructured characteristics of the MA W-Cu composite powder.

  • PDF

Effect of CeO2 Coating on the Grain Growth of Cu Particles (CeO2 코팅을 통한 Cu 입자의 입성장 억제 효과에 관한 연구)

  • Yoo Hee-Jun;Moon Ji-Woong;Oh You Keun;Moon Jooho;Hwang Hae Jin
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.413-421
    • /
    • 2005
  • Copper is able to work as a current collector under wide range of hydrocarbon fuels without coking in Solid oxide fuel cells (SOFCs). The application of copper in SOFC is limited due to its low melting point, which result in coarsening the copper particle. This work focuses on the sintering of copper powder with ceria coating layer. Ceria-coated powder was prepared by thermal decomposition of urea in $Ce(NO_3)_3\cdot6H_2O$ solution, which containing CuO core particles. The ceria-coated powder was characterized by XRD, ICP, and SEM. The thermal stability of the ceria-coated copper in fuel atmosphere $(H_2)$ was observed by SEM. It was found that the ceria coating layer could effectively hinder the grain growth of the copper particles.