• Title/Summary/Keyword: Atenolol

Search Result 37, Processing Time 0.024 seconds

Bioequivalence of Sinil Atenolol Tablets to Tenormin Tablets (Atenolol 50 mg) (테놀민 정(아테놀올 50 mg)에 대한 신일아테놀올 정의 생물학적 동등성)

  • Gwak, Hye-Sun;Kang, Sung-Ha;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.51-53
    • /
    • 2003
  • This study was conducted to compare the bioavailability of a generic product of Sinil Atenolol Tablets (Sinil Pharmaceutical Co., Ltd., Korea) with the innovator product, $Tenormin^{\circledR}$ Tablets in 20 healthy Korean volunteers. The volunteers received a single 50 mg dose of each atenolol formulation according to a randomized, two-way crossover design. Plasma samples were obtained over a 24-hour interval, and atenolol concentrations were determined by HPLC with a fluorescence detector. From the plasma atenolol concentration vs time curves, the following parameters were compared: area under the plasma concentration-time curve (AUC), peak plasma concentration $(C_{max})$, time to reach peak plasma concentration $(T_{max})$, and terminal first order elimination half-life $(t_{1/2})$. No statistically significant difference was obtained between the $T_{max}$ values, and the logarithmic transformed AUC and $C_{max}$ values of the two products. The 90% confidence for the ratio of the logarithmically transformed AUC and $C_{max}$ values of Sinil Atenolol Tablets over those of $Tenormin^{\circledR}$ Tablets were calculated to be between 0.99 and 1.07, and 1.04 and 1.16, respectively; both were within the bioequivalence limit of 0.80-1.25. The mean of $T_{max}$ in $Tenormin^{\circledR}$ Tablet group was 3.68 hour, and that in Sinil Atenolol Tablet group was 3.65 hour. The values of $t_{1/2}$ between the two products were found comparable, and the mean $t_{1/2}$ values of $Tenormin^{\circledR}$ Tablets and Sinil Atenolol Tablets were 5.9 and 6.0 hour, respectively. Based on these results, it was concluded that Sinil Atenolol Tablets were comparable to $Tenormin^{\circledR}$ Tablets in both the rate and extent of absorption, indicating that Sinil Atenolol Tablets were bioequivalent to the reference product, $Tenormin^{\circledR}$ Tablets

Effect of Renal Failure on Pharmacokinetics of Atenolol in Rabbits (아테놀올의 체내동태에 대한 신장해의 영향)

  • Lee, Chong Ki;Cho, Sam Sang
    • Korean Journal of Clinical Pharmacy
    • /
    • v.8 no.1
    • /
    • pp.23-28
    • /
    • 1998
  • The pharmacokinetics of atenolol (25 mg/kg, i.v.) in the folate-induced renal failure rabbits was studied. Renal failure was induced by the i.v. injection of folate (50, 100, and 200 mg/kg). At folate dose of 100 and 200 mg/kg, the serum creatinine concentration (Scr) and blood urea nitrogen (BUN) increased significantly compared with control rabbits. Plasma concentrations and AUC of atenolol increased significantly at folate dose of 100 and 200 mg/kg. The elimination rate constant $(K_{el})$ and total body clearance $(CL_t)$ of atenolol decreased significantly, and half-life ($t_{1/2}$) and mean residence time (MRT) of atenolol increased significantly at folate dose of 100 and 200 mg/kg. The serum creatinine concentration $(S_{cr})$ correlated well (p<0.05) with half-life $(t_{1/2})$ and elimination rate constant $(K_{el})$ of atenolol, as well as BUN with AUC and total body clearance $(CL_t)$ of atenolol.

  • PDF

Bioequivalenee of Samchundang Atenolol Tablet to Tenolmin Tablet (테놀민 정에 대한 삼천당아테놀올 정의 생물학적동등성)

  • Cho, Hea-Young;Kang, Hyun-Ah;Lee, Suk;Baek, Seung-Hee;Lee, Yong-Bok
    • YAKHAK HOEJI
    • /
    • v.47 no.5
    • /
    • pp.339-344
    • /
    • 2003
  • Atenolol is a water soluble, ${\beta}_1$ selective adrenoceptor antagonist used in the treatment of angina and hypertension. It is primarily eliminated renally with minimal hepatic metabolism. The purpose of the present study was to evaluate the bioequivalence of Samchundang Atenolol (Samchundang Pharmaceutical Co., Korea.) to Tenolmin(Hyundai Pharmaceutical Ind. Co., Korea). The atenolol release from the two atenolol tablets in vitro was tested using KP VII Apparatus II method with various different kinds of dissolution media (pH 1.2, 4.0, 6.8 buffer solution and water). Twenty four normal male volunteers, 22.83$\pm$1.99 years in age and 65.82$\pm$7.15 kg in body weight, were divided into two groups and a randomized $2{\times}2$ cross-over study was employed. After one tablet containing 50 mg of atenolol was orally administered, blood was taken at predetermined time intervals and the concentrations of atenolol in serum were determined using HPLC method with fluorescence detector. The dissolution profiles of two atenolol tablets were very similar at all dissolution media. Besides, the pharmacokinetic parameters such as $AUC_{t}$, $C_{max}$ and $T_{max}$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed $AUC_{t}$ and $C_{max}$ and untransformed $T_{max}$. The results showed that the differences in $AUC_{t}$, $C_{max}$ and $T_{max}$ between two tablets based on the Tenolmin were 3.74%, 4.38% and 17.77%, respectively. There were no sequence effects between two tablets in these parameters. The 90% confidence intervals using logarithmically transformed data were within the acceptance range of log(0.8) to log(1.25) (e.g., log(0.98)∼log(1.l1) and log(0.95)∼log(1.l5) for $AUC_{t}$ and $C_{max}$ respectively), indicating that Samchundang Atenolol tablet is bioequivalent to Tenolmin tablet.

Validated HPLC Method for the Pharmacokinetic Study of Atenolol and Chlorthalidone Combination Therapy in Korean Subjects

  • Kang, Hyun-Ah;Kim, Hwan-Ho;Kim, Se-Mi;Yoon, Hwa;Cho, Hea-Young;Oh, Seaung-Youl;Choi, Hoo-Kyun;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.5
    • /
    • pp.331-338
    • /
    • 2006
  • A rapid, selective and sensitive reverse-phase HPLC methods for the determination of atenolol and chlorthalidone in human serum and whole blood were validated, and applied to the pharmacokinetic study of atenolol and chlorthalidone combination therapy. Atenolol and an internal standard, pindolol, were extracted from human serum by liquid-liquid extraction, and analyzed on a $\mu$-Bondapak C18 $10-{\mu}$ column in a mobile phase of methanol-0.01 M potassium dihydrogenphosphate(30:70, v/v, adjusted to pH 3.5) and fluorescence detection(emission: 300 nm, excitation: 224 nm). Chlorthalidone and an internal standard, probenecid, were extracted form human whole blood by liquid-liquid extraction, and analyzed on a Luna C18 $5-{\mu}$ column in a mobile phase of acetonitrile containing 77% 0.01 M sodium acetate and UV detection at 214 nm. These analysis were performed at three different laboratories using the same quality control(QC) samples. The chromatograms showed good resolution, sensitivity, and no interference by human serum and whole blood, respectively. The methods showed linear responses over a concentration range of 10-1,000 ng/mL for atenolol and 0.05-20 ${\mu}g/mL$ for chlorthalidone, with correlation coefficients of greater than 0.999 at all the three laboratories. Intra- and inter-day assay precision and accuracy fulfilled international requirements. Stability studies(freeze-thaw, short-, long-term, extracted sample and stock solution) showed that atenolol and chlorthalidone were stable. The lower limit of quantitation of atenolol and chlorthalidone were 10 ng/mL and 0.05 ${\mu}g/mL$, respectively, which was sensitive enough for pharmacokinetic studies. These methods were applied to the pharmacokinetic study of atenolol and chlorthalidone in human volunteers following a single oral administration of Hyundai $Tenoretic^{\circledR}$ tablet(atenolol 50 mg and chlorthalidone 12.5 mg) at three different laboratories.

Nanogold-modified Carbon Paste Electrode for the Determination of Atenolol in Pharmaceutical Formulations and Urine by Voltammetric Methods

  • Behpour, M.;Honarmand, E.;Ghoreishi, S.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.845-849
    • /
    • 2010
  • A gold nanoparticles modified carbon paste electrode (GN-CPE) has been used for the determination of atenolol (ATN) in drug formulations by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronocoulometric methods. The results revealed that the modified electrode shows an electrocatalytic activity toward the anodic oxidation of atenolol by a marked enhancement in the current response in buffered solution at pH 10.0. The anodic peak potential shifts by -80.0 mV when compared with the potential using bare carbon paste electrde. A linear analytical curve was observed in the range of $1.96\;{\times}\;10^{-6}$ to $9.09\;{\times}\;10^{-4}\;mol\;L^{-1}$. The detection limit for this method is $7.3\;{\times}\;10^{-8}\;mol\;L^{-1}$. The method was then successfully applied to the determination of atenolol in tablets and human urine. The percent recoveries in urine ranged from 92.0 to 110.0%.

Bioequivalence Evaluation of Two Atenolol Tablet Preparations in Korean Healthy Male Volunteers

  • Gwak, Hye-Sun;Chun, In-Koo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.187-191
    • /
    • 2007
  • This study was conducted to compare the bioavailability of two brands of atenolol (50 mg) tablets, which are a generic product of $Ditent^{\circledR}$ (Daewon Pharmaceutical Co., Ltd., Korea) and an innovator product $Tenormin^{\circledR}$ (Hyundai Pharm. Ind. Co., Ltd., Korea), in 20 healthy Korean male volunteers. The volunteers received a single 50 mg dose of each atenolol formulation according to a randomized, two-way cross-over design. The washout period between treatments was 1 week. Plasma samples were obtained over a 24-hour interval, and atenolol concentrations were determined by HPLC with a fluorescence detector. From the plasma atenolol concentration vs. time curves, the following parameters were compared: area under the plasma concentration-time curve ($AUC_{0-24}$), peak plasma concentration ($C_{max}$), time to reach peak plasma concentration ($T_{max}$), and terminal first order elimination half-life ($t_{1/2}$). No statistically significant difference was obtained between the $T_{max}$ values, and the logarithmic transformed $AUC_{0-24}$ and $C_{max}$ values of the two products. The 90% confidence interval for the ratio of the logarithmically transformed AUC and $C_{max}$ values of $Ditent^{\circledR}$ over those of $Tenormin^{\circledR}$ were calculated to be between 0.85 and 1.04, and 0.89 and 1.07, respectively; both were within the bioequivalence limit of 0.80-1.25. The mean of $T_{max}$ in $Tenormin^{\circledR}$ group was 3.1 hour, and that in Ditent$^{\circledR}$ group was 3.2 hour. The values of $t_{1/2}$ between the two products were found comparable, and the mean values were 5.2 hour in the both products. Based on these results, it was concluded that $Ditent^{\circledR}$ was comparable to $Tenormin^{\circledR}$ in both the rate and extent of absorption, indicating that $Ditent^{\circledR}$ was bioequivalent to the reference product, $Tenormin^{\circledR}$.

Ocular transport of hydrophilic drugs: Enhancement of the paracellular penetration across cornea and conjunctiva in the rabbit (수용성약물의 안점막 투과기전에 관한 연구: 토끼의 각막 및 결막 세포간극경로의 투과촉진)

  • Chung, Youn-Bok;Lyoo, Seen-Suk;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.1
    • /
    • pp.43-53
    • /
    • 1996
  • The objective of this study was to determine whether 4-phenylazobezyloxycarbonyl-Pro-Leu-Gly-Pro-D-Arg (Pz-peptide), an enhancer of hydrophilic solute permeability in the intestine, could elevate the paracellular permeability of hydrophilic drugs across cornea and conjunctiva in the rabbit. The in-vitro penetration of hydrophilic drugs (mannitol, atenolol) and lipophilic drug (propranolol) across the rabbit cornea and conjunctiva was studied either in the presence or absence of 3 mM Pz-peptide. Drug penetration was evaluated using the modified Ussing chamber. The conjunctiva was more permeable than the cornea to all drugs. Pz-peptide showed enhanced effects on the drug transport across cornea and conjunctiva in a concentration dependent manner. Effects or ion transport inhibitor on the mannitol penetration were then investigated. Mannitol penetration was not changed by serosal addition of $100\;{\mu}M$ ouabain, suggesting that $Na^+/K^+$ ion tranporter was not involved in the Pz-peptide induced elevation of paracellular drug permeability. Furthermore, effects of Pz-peptide and EDTA on the transport of atenolol and propranolol into the ocular tissues or blood circulation after its administration into both eyes were investigated. EDTA showed enhanced effect on propranolol transport into the ocular tissues, but Pz-peptide did not show significant difference. Systemic absorption of propranolol by the addition of EDTA or Pz-peptide was not changed. On the other hand, EDTA and Pz-peptide elavated the atenolol transport into the ocular tissues. The transport of atenolol into the blood circulation was also enhanced by the addition of EDTA, but no effect was observed by the addition of Pz-peptide. The above findings suggest that Pz-peptide would be used as an paracellular pathway enahncer of hydrophilic drugs into the eye, without affecting the systemic absortion of topically applied opthalmic drugs.

  • PDF

Analysis of Related Compounds from Commercial Atenolol Raw Materials and Preparations by High-Performance Liquid Chromatography (HPLC를 이용한 시판 아테놀롤 원료 및 제품 중 유연물질의 분석)

  • Dong, Nguyen Thanh;Kang, Ji-Youn;Jung, Young-Hee;Lim, Eun-Hee;Hwang, Gwi-Seo;Kang, Chan-Soon;Kim, Eun-Jung;Kang, Jong-Seong
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.453-457
    • /
    • 2004
  • Atenolol and related compounds found in raw materials and commercial products were analyzed by reversed-phase high-performance liquid chromatography. A mixed solution of phosphate buffer (3.4 g/l, pH 3.0), tetrahydrofurane and methanol (800:20:180, v/v/v) including sodium octanesulfonate (1 g/l) and tetrabutylammonium-hydrogensulfate (0.4 g/l) was used as mobile phase at the flow rate of 0.25 ml/min. Detection was carried out at UV 226 nm. Atenolol related compounds, such as bis ether, tertiary amine and blocker acid were identified by comparing the retention time of the standard. The within-day and between-day precisions of the separated compounds were less than 1.2% and 3.4%, respectively. The contents of related compounds of the tested samples were under the limit prescribed in the European Pharmacopoeia. The pattern of the related compounds showed that atenolol raw materials and products could be classified in three different groups, indicating that the materials originated from different source or treated in different way.

Stability of Atenolol Tablet After Dispensing to Powder form at Community Pharmacies (근린약국에서 산제로 조제된 아테놀올정의 안정성)

  • Yong, Chul-Soon;Choi, Han-Gon;Rhee, Jong-Dal;Yoo, Bong-Kyu
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.4
    • /
    • pp.299-303
    • /
    • 2004
  • Prescription filling in powder form is performed in community pharmacy practice to adjust dose for children and patients who cannot swallow whole tablet. However, there are few reports regarding the stability of the active ingredient and possible microbial growth after the medication is dispensed to powder form. This study examined the stability of atenolol, an antihypertensive agent, and microbial growth in the unit dose pouches dispensed at twenty-one community pharmacies located in Taegu area. Randomly chosen first unit dose pouch contained 77.4% of the prescribed dose of the drug and there were only four community pharmacies that dispensed the drug within 10% deviation from the dose prescribed by physician. Surprisingly, there were three community pharmacies that dispensed the drug with greater than 40% deviation, which may pose a major concern regarding the efficacy and safety of the drug prescribed for the treatment of hypertension. Atenolol content during a month did not indicate significant change, showing 5.4%, 4.3%, and 3.3% of decrease in 50%, 80%, and 90% relative humidity conditions, respectively. Microbiological examination during a month showed less than 0.5 microorganism in high power field (hpf) in all the relative humidity conditions tested. Based on this study, pharmacy practice in community pharmacy needs to be rigorously regulated to ensure that the dose of the prescribed drug is properly incorporated into the unit dose pouch dispensed as powder form.

Studies on Drug Absorption Characteristics for Development of Ocular Dosage Forms: Ocular and Systemic Absorption of Topically Applied ${\beta}-Blockers$ in the Pigmented Rabbit

  • Lee, Yong-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.3
    • /
    • pp.59-66
    • /
    • 1994
  • The objective of this study was to determine the influence of drug lipophilicity on the extent of ocular and systemic absorption following topical solution instillation in the pigmented rabbit. ${\beta}-Blockers$ of various lipophilicity were chosen as model drugs, $25\;{\mu}l$ of a 15 mM drug solution in isotonic pH 7.4 buffer was instilled, and ocular tissue and plasma drug concentrations were monitored. Ocular absorption was apparently increased in all eye tissues, but non-corneal absorption ratio was decreased by increasing of drug lipophilicity. Systemic bioavailability was ranged from 61% for atenolol to 100% for timolol, and at least 50% of the systemically absorbed drug reached the blood stream from the nasal mucosa. Occluding the nasolacrimal duct for 5 min reduced the extent of systemic absorption of timolol and levobunolol, but did not do so for atenolol and betaxolol. Taken together, the ocular absorption of topically applied ophthalmic drugs would be modest for lipophilic drugs. By contrast, the systemic bioavailability would be modest for drugs at the extremes of lipophilicity, and the nasal contribution to systemically absorbed drug diminished with increasing of drug lipophilicity.

  • PDF