• Title/Summary/Keyword: Asynchronous Distributed Systems

Search Result 47, Processing Time 0.027 seconds

On Relationship between Safety and Liveness of Election Problem in Asynchronous Distributed Systems

  • Park, Sung-Hoon
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.30-34
    • /
    • 2011
  • A Leader is a Coordinator that supports a set of processes to cooperate a given task. This concept is used in several domains such as distributed systems, parallelism and cooperative support for cooperative work. In completely asynchronous systems, there is no solution for the election problem satisfying both of safety and liveness properties in asynchronous distributed systems. Therefore, to solve the election problem in those systems, one property should be weaker than the other property. If an election algorithm strengthens the safety property in sacrifice of liveness property, it would not nearly progress. But on the contrary, an election algorithm strengthening the liveness property in sacrifice of the safety property would have the high probability of violating the safety property. In this paper, we presents a safety strengthened Leader Election protocol with an unreliable failure detector and analyses it in terms of safety and liveness properties in asynchronous distributed systems.

On the Hardness of Leader Election in Asynchronous Distributed Systems with Crash Failures

  • Park Sung-Hoon;Kim Yoon
    • International Journal of Contents
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • This paper is about the hardness of Leader Election problem in asynchronous distributed systems in which processes can crash but links are reliable. Recently, the hardness of a problem encountered in the systems is defined with respect to the difficulty to solve it despite failures: a problem is easy if it can be solved in presence of failures, otherwise it is hard [9]. It is shown in [9] that problems are classified as three classes: F (fault-tolerant), NF (Not fault-tolerant) and NFC (NF-completeness). Among those, the class NFC is the hardest problem to solve. It is also shown in [9] that the construction of Perfect Failure Detector (problem P) belongs to NFC. In this paper, we show that Leader Election is also one of NFC problems by using a general reduction protocol that reduces the Leader Election Problem to P. We use a formulation of the Leader Election problem as a prototype to show that it belongs to NFC.

  • PDF

Development of Coordinated Scheduling Algorithm and End-to-end Delay Analysis for CAN-based Distributed Control Systems (CAN기반 분산 제어시스템의 종단 간 지연시간 분석과 협조 스케줄링 알고리즘 개발)

  • 이희배;김홍열;김대원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.501-508
    • /
    • 2004
  • In this paper, a coordinated scheduling algorithm is proposed to reduce end-to-end delay in distributed control of systems. For the algorithm, the analysis of practical end-to-end delay in the worst case is performed priory with considering implementation of the systems. The end-to-end delay is composed of the delay caused by multi-task scheduling of operating systems, the delay caused by network communications, and the delay caused by asynchronous timing between operating systems and network communications. Through some simulation tests based on CAN(Controller Area Network), the proposed worst case end-to-end delay analysis is validated. Through the simulation tests, it is also shown that a real-time distributed control system designed to existing worst case delay cannot guarantee end-to-end time constraints. With the analysis, a coordinated scheduling algorithm is proposed here. The coordinated scheduling algorithm is focused on the reduction of the delay caused by asynchronous timing between operating systems and network communications. Online deadline assignment strategy is proposed for the scheduling. The performance enhancement of the distributed control systems by the scheduling algorithm is shown through simulation tests.

Improving Performance of Large Sparse Linear System Solvers On Distributed Memory Systems By Asynchronous Algorithms (비동기 알고리즘을 이용한 분산 메모리 시스템에서의 초대형 선형 시스템 해법의 성능 향상)

  • Park, Pil-Seong;Sin, Sun-Cheol
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.439-446
    • /
    • 2001
  • The main stream of parallel programming today is using synchronous algorithms, where processor synchronization for correct computation and workload balance are essential. Overall performance of the whole system is dependent upon the performance of the slowest processor, if workload is not well-balanced or heterogeneous clusters are used. Asynchronous iteration is a way to mitigate such problems, but most of the works done so far are for shared memory systems. In this paper, we suggest and implement a parallel large sparse linear system solver that improves performance on distributed memory systems like clusters by reducing processor idle times as much as possible by asynchronous iterations.

  • PDF

Proof that the Election Problem belongs to NF-completeness Problems in Asynchronous Distributed Systems (비동기적 분산 시스템에서 선출 문제는 NF-completeness 문제임을 증명)

  • Park, Sung-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.3
    • /
    • pp.169-175
    • /
    • 2002
  • This paper is about the hardness of the Election problem in asynchronous distributed systems in which processes can crash but links are reliable. The hardness of the problem is defined with respect to the difficulty to solve it despite failures. It is shown that problems encountered in the system are classified as three classes of problems: F (fault-tolerant), NF (Not fault-tolerant) and NFC(NF-completeness). Among those, the class NFC is the hardest problems to solve. In this paper, we prove that the Election problem is the most difficult problem which belongs to the class NFC.

Implementation Of Asymmetric Communication For Asynchronous Iteration By the MPMD Method On Distributed Memory Systems (분산 메모리 시스템에서의 MPMD 방식의 비동기 반복 알고리즘을 위한 비대칭 전송의 구현)

  • Park Pil-Seong
    • Journal of Internet Computing and Services
    • /
    • v.4 no.5
    • /
    • pp.51-60
    • /
    • 2003
  • Asynchronous iteration is a way to reduce performance degradation of some parallel algorithms due to load imbalance or transmission delay between computing nodes, which requires asymmetric communication between the nodes of different speeds. To implement such asynchronous communication on distributed memory systems, we suggest an MPMD method that creates an additional separate server process on each computing node, and compare it with an SPMD method that creates a single process per node.

  • PDF

A Fault-tolerant Mutual Exclusion Algorithm in Asynchronous Distributed Systems

  • Kim, Yoon
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • Mutual Exclusion is one of the most studied topics in distributed systems where processes communicate by asynchronous message passing. It is often necessary for multiple processes at different sites to access a shared resource or data called a critical section (CS) in distributed systems. A number of algorithms have been proposed to solve the mutual exclusion problem in distributed systems. In this paper, we propose the new algorithm which is modified from Garg's algorithm[1] thus works properly in a fault-tolerant system. In our algorithm, after electing the token generator, the elected process generates a new token based on the information of the myreqlist which is kept by every process and the reqdone which is received during election. Consequently, proposed algorithm tolerates any number of process failures and also does even when only one process is alive.

The Minimum Requirements for Solving Election Problem in Asynchronous Distributed Systems (비동기적 분산 시스템하에서 선출 문제 해결을 위한 최소 필요 조건)

  • Park, Sung-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3815-3820
    • /
    • 2000
  • This paper is about the minimum requirements to solve the Election problem in asynchronous distributed systems. The focus of the paper is to find out what failure detector is the weakest one to solve the Election problem. We first discuss the relationship between the Election problem and the Consensus problem in asynchronous distributed systems with unreliable failure detectors and show that the Election problem is harder than the Consensus problem. More precisely, the weakest failure detector that is needed to solve this problem is a Perfect Failure Detector. which is strictly stronger than the weakest failure detector that is needed to solve Consensus.

  • PDF

A Mutual Exclusion Algorithm in Asynchronous Distributed System with Failure Detectors (비동기적 분산시스템에서 고장 추적 장치를 이용한 상호배제 알고리즘 설계)

  • Park, Sung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2457-2464
    • /
    • 2013
  • In this paper, we design and analyze a mutual exclusion algorithm, based on the Token and Failure detector, in asynchronous distributed systems. A Failure Detector is an independent module that detects and reports crashes of other processes. There are some of advantages in rewriting the Token-based ME algorithm using a Failure Detector. We show that the Token-based ME algorithm, when using Failure Detector, is more effectively implemented than the classic Token-based ME algorithm for synchronous distributed systems.