• Title/Summary/Keyword: Asymmetric ratio

Search Result 314, Processing Time 0.027 seconds

Correlation between the Asymmetric Ratio of Occlusal Force and the Thickness of the Middle Scalene Muscle (교합력 비대칭률과 중간 목갈비근 근육 두께의 비대칭률 상관관계)

  • Chae, Jung-Byung;Cho, Hyun-Rae
    • PNF and Movement
    • /
    • v.14 no.1
    • /
    • pp.53-57
    • /
    • 2016
  • Purpose: This study aimed to examine the correlation between the asymmetric ratio of occlusal force of the temporomandibular joint and the thickness of the middle scalene muscle. Methods: The study measured the occlusal force of the right and left temporomandibular joints in 30 subjects (12 males and 18 females). Pearson's correlation analysis was performed to examine the effect of occlusal force on the asymmetric ratio of the thickness of their middle scalene muscles by measuring the force using ultrasound after the break. Results: The correlation between the asymmetric ratio of occlusal force and muscle thickness is 0.41, according to Pearson's correlation coefficient. Therefore, the result shows a moderate correlation with the asymmetric ratio of the temporomandibular joint depending on differences in the thickness of the middle scalene muscle. Conclusion: Based on the above results, the asymmetric ratio of occlusal force was found to correlate with the thickness of the middle scalene muscle. Thus, therapeutic intervention is required for the middle scalene muscle in the case of temporomandibular joint disorder.

Estimation of active multiple tuned mass dampers for asymmetric structures

  • Li, Chunxiang;Xiong, Xueyu
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.505-530
    • /
    • 2008
  • This paper proposes the application of active multiple tuned mass dampers (AMTMD) for translational and torsional response control of a simplified two-degree-of-freedom (2DOF) structure, able to represent the dynamic characteristics of general asymmetric structures, under the ground acceleration. This 2DOF structure is a generalized 2DOF system of an asymmetric structure with predominant translational and torsional responses under earthquake excitations using the mode reduced-order method. Depending on the ratio of the torsional to the translational eigenfrequency, i.e. the torsional to translational frequency ratio (TTFR), of asymmetric structures, the following three cases can be distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2) torsionally intermediate stiff structures (TTFR = 1.0), and (3) torsionally stiff structures (TTFR > 1.0). The even distribution of the AMTMD within the whole width and half width of the asymmetric structure, thus leading to three cases of installing the AMTMD (referred to as the AMTMD of case 1, AMTMD of case 2, AMTMD of case 3, respectively), is taken into account. In the present study, the criterion for searching the optimum parameters of the AMTMD is defined as the minimization of the minimum values of the maximum translational and torsional displacement dynamic magnification factors (DMF) of an asymmetric structure with the AMTMD. The criterion used for assessing the effectiveness of the AMTMD is selected as the ratio of the minimization of the minimum values of the maximum translational and torsional displacement DMF of the asymmetric structure with the AMTMD to the maximum translational and torsional displacement DMF of the asymmetric structure without the AMTMD. By resorting to these two criteria, a careful examination of the effects of the normalized eccentricity ratio (NER) on the effectiveness and robustness of the AMTMD are carried out in the mitigation of both the translational and torsional responses of the asymmetric structure. Likewise, the effectiveness of a single ATMD with the optimum positions is presented and compared with that of the AMTMD.

Texture and Plastic Strain Ratio Changes during a 2 Step Asymmetric Rolling and Annealing of AA5083 Al Alloy Sheet (2단계 비대칭 압연과 열처리한 AA5083 Al 합금판재의 집합조직과 소성변형비 변화)

  • Jeong, H.B.;Lee, J.H.;Kim, G.H.;Nam, S.K.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.82-87
    • /
    • 2014
  • The plastic strain ratio is one of the factors that affect the deep drawability of Al alloy sheet. The deep drawability of Al alloy sheet is limited because of its low plastic strain ratio. Therefore an increase in the plastic strain ratio to improve the deep drawability of Al alloy sheet is needed. The current study investigated the increase of the plastic strain ratio and the change in texture of AA5083 Al alloy sheet after a 2 step asymmetric rolling with heat treatments. The average plastic strain ratio of initial AA5083 Al alloy sheets was 0.83. After the first asymmetric rolling step of 88% deformation and subsequent heat treatment at $320^{\circ}C$ for 10 minutes the value was still 0.83. After the second asymmetric rolling of 14% reduction and subsequent heat treatment at $330^{\circ}C$ for 10 minutes the plastic strain ratio rose to 1.01. The average plastic strain ratio after the 2 step asymmetric rolling and heat treatment is 1.2 times higher than that of initial AA5083 Al alloy sheet. This result is related to the development of ND/<111> texture component after the second asymmetric rolling and heat treatment.

Comparison of Performance between Symmetric Trapezoidal Fins and Asymmetric Trapezoidal Fins (대칭 사다리꼴 핀과 비대칭 사다리꼴 핀의 성능 비교)

  • Kang, Hyungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.205-213
    • /
    • 2016
  • Heat loss and fin efficiency of symmetric and asymmetric trapezoidal fins with variable slope of fin's top surface are obtained by using a two-dimensional analytic method. Shapes of symmetric and asymmetric fins are changed from rectangular through trapezoidal to triangular by adjusting the fin shape factor. The ratio of symmetric trapezoidal fin length to asymmetric trapezoidal fin length is presented as a function of fin base height and convection characteristic number. The ratio of symmetric trapezoidal fin efficiency to asymmetric trapezoidal fin efficiency is presented as a function of the fin base height and fin shape factor. One of results shows that asymmetric trapezoidal fin length is shorter than symmetric trapezoidal fin length (i.e., asymmetric trapezoidal fin volume is smaller than symmetric trapezoidal fin volume) for the same heat loss when the fin base height and fin shape factor are the same.

Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA1050 Al Sheet (열간 비대칭 압연한 AA1050 Al 판재의 집합조직과 소성변형비 변화)

  • Hamrakulov, B.;Lee, C.W.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.287-293
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep drawability of the Al sheet. This study investigated the increase in the plastic strain ratio and the texture change of AA1050 Al sheet after the hot asymmetric rolling. The average plastic strain ratio of initial AA1050 Al sheets was 0.41. After 84% hot asymmetric rolling at $400^{\circ}C$, the average plastic strain ratio was 0.77. The average plastic strain ratio of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1.9 times higher than that of initial AA1050 Al sheet. The ${\mid}{\Delta}R{\mid}$ of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1/2 times lower than that of initial AA1050 Al sheet. This result is due to the development of the intensity of the ${\gamma}-fiber$ texture and the decrease of the intensity of {001}<100> texture after the hot asymmetric rolling of AA1050 Al sheet.

Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA3003 Sheet (열간 비대칭 압연한 AA3003 판재의 집합조직과 소성변형비 변화)

  • Hamrakulov, B.;Lee, C.W.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.281-286
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep draw ability of the Al sheet. This study investigated the increase of the plastic strain ratio and the texture change of AA3003 sheet after the hot asymmetric rolling. The average plastic strain ratio of the initial AA3003 sheets was 0.69. After 83% hot asymmetric rolling at $200^{\circ}C$, the average plastic strain ratio was 0.83. The average plastic strain ratio of the 83% hot asymmetrically rolled AA3003 sheet at $200^{\circ}C$ is 1.2 times higher than that of the initial AA3003 sheet. The ${\mid}{\Delta}R{\mid}$ of 83% hot asymmetrically rolled AA3003 sheet at $200^{\circ}C$ is 0.83 times lower than that of the initial AA3003 sheet. This result is due to the development of the intensity of ${\gamma}-fiber$ texture and reduces the intensity of {001}<110> and {001}<100> textures after hot asymmetric rolling of AA3003 sheet.

Numerical Study on the Aerodynamic Performance of Asymmetric Vertical Folding Rotor Sail (비대칭 수직 접이식 로터세일의 성능 평가에 관한 수치해석 연구)

  • Jung Yoon Park;Janghoon Seo;Dong-Woo Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.68-76
    • /
    • 2024
  • The rotor sail is one of the representative devices in eco-friendly wind-assisted propulsion systems that have been practically applied to commercial ships. The present study proposes an asymmetric vertical folding rotor sail (AFRS) designed for small ships, featuring asymmetric geometry along the vertical direction and the function of vertical folding. To evaluate the aerodynamic performance of rotor sail, the drag, lift and lift-to-drag ratio were derived using computational fluid dynamics. The aerodynamic performance of AFRS was compared with that of normal rotor sail with different aspect ratios and spin ratios. The effect of geometric parameters on the aerodynamic performance of AFRS was assessed by varying the asymmetric diameter ratio. The maximum improvement in lift-to-drag ratio for AFRS was approximately 12% in the considered case. Additionally, the resistance is decreased when AFRS is vertically folded without rotating. Throughout the present study, improved aerodynamic and resistance performances for AFRS were confirmed, which will successfully provide additional propulsion to small ships.

Plastic Strain Ratios of Asymmetry Rolled Aluminum Sheets (비대칭 압연 알루미늄의 소성변형비)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.425-426
    • /
    • 2007
  • The physical and mechanical properties of the sheets metals are closely related to the presence of preferred crystallographic orientations which were produced by the manufacturing process. To obtain the aluminum alloys sheets with good Al sheet formability, the plastic strain ratio (or r-value) of AA1050 Al sheets after asymmetric rolling and subsequent heat treatment was studied. The AA1050 aluminum alloy sheets after asymmetric rolling with high reduction ratio and following heat treatment had the higher plastic strain ratio.

  • PDF

Output Power Back-Off (OPBO) Based Asymmetric Doherty Power Amplifier (출력 전력 백-오프 기반 비대칭 도허티 전력 증폭기)

  • Chun, Sang-Hyun;Jang, Dong-Hee;Kim, Ji-Yeon;Kim, Jong-Heon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.2
    • /
    • pp.51-59
    • /
    • 2010
  • In this paper, we propose an inverted type asymmetric Doherty amplifier with optimized efficiency characteristic in wanted output power back-off (OPBO) range according to peak to average power ratio of input signal In order to obtain optimized efficiency of the asymmetric Doherty amplifier in wanted OPBO, peak power ratio between main amplifier and peaking amplifier was determined and then impedance of 90 degrees impedance transformer was obtained by peak power ratio. The offset line length and peak dividing ratio of the asymmetric Doherty amplifier were also calculated. From the measurement results, the proposed amplifier has achieved 40 % drain efficiency and -35 dBc adjacent channel leakage ratio at the average output power of 48.7 dBm for CDMA 2000 1x 3-FA test signal.

Changes of Texture and Plastic Strain Ratio of Asymmetrically Rolled and Annealed Cu Sheet (I) (비대칭 압연과 열처리한 Cu 판의 집합조직과 소성변형비 변화 (I))

  • Lee, C.W.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.354-360
    • /
    • 2019
  • The plastic strain ratio is one of the factors that affect the deep drawability of metal sheets. The plastic strain ratio of fully annealed Cu sheet is low because its texture has {001}<100>. In order to improve the deep drawability of Cu sheet, it is necessary to increase the plastic strain ratio of Cu sheet. This study investigate the increase of plastic strain ratio of a Cu sheet after the first asymmetry rolling and annealing, and the second asymmetry rolling and annealing in air and Ar gas conditions. The average plastic strain ratio (Rm) was 0.951 and |ΔR| value was 1.27 in the initial Cu sheet. After the second 30.1% asymmetric rolling and annealing of Cu sheet at 1000℃ in air condition, the average plastic strain ratio (Rm) was 1.03 times higher. However, |ΔR| was 0.12 times lower than that of the initial specimen. After the second 18.8% asymmetric rolling and annealing of Cu sheet at 630℃ in Ar gas condition, the average plastic strain ratio (Rm) was 1.68 times higher and |ΔR| was 0.82 times lower than that of the initial specimen. These results are attributed to the change of the texture of Cu sheet due to the different annealing conditions.