• Title/Summary/Keyword: Asymmetric heating

Search Result 28, Processing Time 0.027 seconds

New Instabilities in Accretion Flows onto Black Holes

  • MOLTENI D.;FAUCI F.;GERARDI G.;BISIKALO D.;KUZNETSOV O.;ACHARYA K.;CHAKRABARTI S.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.247-249
    • /
    • 2001
  • The accretion disks are usually supposed symmetric to reflection on the Z=0 plane. Asymmetries in the flow are be ver-y small in the vicinity of the compact accretor. However their existence can have a important role in the case of subkeplerian accretion flows onto black holes. These flows lead to strong heating and even to the formation of shocks close to the centrifugal barrier. Large asymmetries are due to the development of the KH instability triggered by the small turbulences at the layer separating the incoming flow from the out coming shocked flow. The consequence of this phenomenon is the production of asymmetric outflows of matter and quasi periodic oscillations of the inner disk regions up and down the Z=0 plane.

  • PDF

Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

  • Lee, Hee-Keun;Chun, Kwang-San;Park, Sang-Hyeon;Kang, Chung-Yun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.770-783
    • /
    • 2015
  • Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

KT-2 Poloidal-Field (PF) System Design

  • J.M. Han;Lee, K.W.;B.G. Hong;C.K. Hwang;B.J. Yoon;J.S. Yoon;Y.D. Bae;W.S. Song;Kim, S.K.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.425-431
    • /
    • 1996
  • KT-2 poloidal-field (PF) system is designed to cope the up-down symmetric double-null (DN) and asymmetric single-null (SN) discharges with typical plasma parameters, in which three sets of "design-basis" scenarios - the ohmic heating (OH), the 5MW and the high bootstrap (HIBS) baseline modes - are applied. The power and energy demand for each cases are also deduced. The peak power and the maximum energy requirements for the KT-2 magnet system, incorporating the PF and the toroidal-field (TF) coils, are proven to be 123MW and 1601MJ, respectively when it is driven in DN configuration. The KT-2 PF system is capable of achieving the machine mission of creating a 500kA heated plasma with a current flattop of $\geq$20 seconds.

  • PDF

Growth Properties of Tungsten-Bronze Sr1-xBaxNb2O6 Single Crystals (텅스텐 브론즈 Sr1-xBaxNb2O6 단결정의 성장 특성)

  • Joo, Gi-Tae;Kang, Bonghoon
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.711-716
    • /
    • 2012
  • Tungsten bronze structure $Sr_{1-x}Ba_xNb_2O_6$ (SBN) single crystals were grown primarily using the Czochralski method, in which several difficulties were encountered: striation formation and diameter control. Striation formation occurred mainly because of crystal rotation in an asymmetric thermal field and unsteady melt convection driven by thermal buoyancy forces. To optimize the growth conditions, bulk SBN crystals were grown in a furnace with resistance heating elements. The zone of $O_2$ atmosphere for crystal growth is 9.0 cm and the difference of temperature between the melt and the top is $70^{\circ}C$. According to the growth conditions of the rotation rate, grown SBN became either polycrystalline or composed of single crystals. In the case of as-grown $Sr_{1-x}Ba_xNb_2O_6$ (x = 0.4; 60SBN) single crystals, the color of the crystals was transparent yellowish and the growth axis was the c-axis. The facets of the crystals were of various shapes. The length and diameter of the single crystals was 50~70 mm and 5~10 mm, respectively. Tungsten bronze SBN growth is affected by the temperature profile and the atmosphere of the growing zone. The thermal expansion coefficients on heating and on cooling of the grown SBN single crystals were not matched. These coefficients were thought to influence the phase transition phenomena of SBN.

Bit-Rate Analysis of Various Symmetric ESQWs SEED under Optimized Input Power (최적 입사 광 전력 하에서의 대칭 ESQWs SEED의 비트 전송률 특성 분석)

  • Lim, Youn-Sup;Choi, Young-Wan
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.66-79
    • /
    • 1999
  • We investigate the effects of high input power on the performance of optical bistable symmetric self-electooptic effect devices (S-SEEDs) using extremely shallow quantum wells (ESQWs). In this study, we consider the four ESQWs SEEDs; anti-reflection (AR)-coated ESQWs S-SEED, back-to-back AR coated ESQWs S-SEED, asymmetric F뮤교-Perot (AFP) ESQWs S-SEED, and back-to-back AFP-ESQWs S-SEED. As the input power increases, device performances such as on/off contrast ratio, on/off reflectivity difference are seriously degraded because of ohmic heating and exciton saturation. On the other hand, switching speed of the device increases up to certain value and then begins to decrease. With reasonable optimization of the input power for the best switching speed operation of the devices in a cascading optical interconnection system, we simulate and analyze the system bit-rate of the various ESQWs S-SEEDs, for a mesa of $5{\times}5{\mu}m^2$ size, changing the namber of quantum wells for the external bias of 0 V and -5V.

  • PDF

Mineralogical Characterization and Thermal Behaviours of Kaolins from the Southern Parts of Korea (한반도 남부지역에서 산출되는 카올린광물의 고온영역에서의 광물학적 특성 연구)

  • Lee, Su-Jeong;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.269-279
    • /
    • 1996
  • Dehydroxylation and mullitization of primary and secondary kaolins were investigated in order to compare and understand the differences in thermal behaviours by DTA and TG up to $1,100^{\circ}C$. Chemical analyses and EPMA of the samples revealed nearly ideal unit-cell formulae of kaolins. The weight losses of dickite and halloysite are 14% and 12.5% on the average, respectively. The activation energies of dehydroxylation of kaolin minerals were calculated according to Kissinger's approach which uses various heating rates in DTA to estimate the activation energy of thermal reactions. The activation energies of dehydroxylation of halloysites from Daemoung and Buksam mines are about $163kJmor^{-1}$ (white), $168kJmor^{-1}$ (pink), and $176kJmor^{-1}$ respectively. The activation energies of dickites collected from Sungsan and Ogmae mines are about $166kJmor^{-1}$ and $387kJmor^{-1}$. The asymmetric shape of endothermic peak in DTA, the relative intensities of OH-stretching bands in FTIR spectroscopy and the existence of residual XRD peaks of the samples which were heated at $550^{\circ}C$ for 2 hours indicate that Sungsan dickite may be more disordered than Ogmae dickite. The new phase formed in thermally treated samples in the range of $900^{\circ}C$ to $1,100^{\circ}C$ was identified as mullite by XRD on the basis of disappearing of the characteristic peaks of kaolins and increasing of amorphous background upon heat treatment. On further heating, loss of more water from dehydroxylate resulted in the formation of mullite and the characteristic X-ray diffraction patterns of mullite began to appear at about $900{\sim}1,000^{\circ}C$ in kaolins.

  • PDF

Clinical study of blood flow and vascular reaction in Taeumin CVA patients using Transcranial Doppler (Transcranial Doppler를 이용(利用)한 태음인 중풍환자의 혈류속도(血流速度)와 혈관(血管) 반응성(反應性)에 대한 임상적(臨床的) 고찰(考察))

  • Lim, Jong-Pil;Bae, Na-Young;Han, Kyung-Soo;Ahn, Taek-Won
    • Journal of Haehwa Medicine
    • /
    • v.15 no.2
    • /
    • pp.263-272
    • /
    • 2006
  • Purpose Brain vessles have autoregulation function, so even when perfusion pressure drops, cerebral blood flow remain stable by vasodilation. Latest research on this reserve of cerebral vessels is being done using TCD, which measures the reserve of the vessels. We did a research comparing cerebral vessel and peripheral vessel reserve between Taeumin, who are more likely to suffer CVA, and the normal. We observed blood flow of Internal carotid artery siphon and radial indicis artery of the two group with TCD. Method We picked 20 people out of patients diagnosed as cerebral infarction at Cheon-An Oriental hospital of Daejeon University. They were diagnosed as Taeumin with QSCCII questionnaire and constitutional differentiation. Using TCD, we measured highest blood flow rate, mean blood flow and asymmetric counting blood flow of Internal carotid artery siphon and radial indicis artery at rest. And then we measured again after stimulating cerebral vessels, by triggering hypercapnia by self apnea and peripheral vessels by palm heating. Result At rest, mean blood flow rate of Internal carotid artery siphon showed significant decrease compared to control group. Blood flow rate of Internal carotid artery siphon after hypercapnia showed significant decline in highest blood flow rate and mean blood flow compared to control group. Cerebral vessel reaction after the hypercapnia induction showed great change in experiment group than the control group. Peripheral vessel reaction after palm heating showed significant decline in experiment group compared to control group. Conclusion In conclusion, measuring the alteration of blood flow used in diagnosing cerebral infarction, is more sensitive when vessel stimulation is done. Non-invasive TCD is effective especially in case of Taeumin who are more likely to suffer vascular disorder than others.

  • PDF

The Preparation of a Polyimide Membrane for the Separation of Water-Acetic Acid Mixture through Pervaporation (Polyimide 막에 의한 물-초산계의 투과증발 분리)

  • 박영태
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.215-220
    • /
    • 1999
  • The asymmetric polyimide [PI] membrane with good solvent-resisting and heat-resisting properties was prepared by using the phase inversion method from polyamic acid, and its pervaporation separation characteristics of water-acetic acid system were studied. It was appeared from the prepared membranes that the best non-solvent of polyamie acid for the phase inversion was toluene. The best heat-treatment condition for the imidization of polyamic acid was 1 hr heating at each of the temperatures, 373, 473, and 573 K The thermal durability and chemical stability during the pervaporation separation of water-acetic acid of the prepared PI membrane was superior. The pervaporation characteristics of prepared membrane were 180 of separation factor and 0.5 kg/$m^2$hr of total flux for 80 wt% acetic acid feed.

  • PDF

Analysis of Heat Transfer by Various Laser Beam Patterns in Laser Material Process (가변 레이저 빔 패턴에 따른 열영향 해석)

  • Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.37-44
    • /
    • 2018
  • In laser material processing for high thermal conductivity, the thermal effect of laser beam shape was examined through computer simulations. In this paper, a circular beam with a focal radius of $500{\mu}m$, an elliptical beam with a major axis of 4 mm and a minor axis of 1 mm, and a rotating beam with a focal radius of $500{\mu}m$ and an angular velocity of 5 rad/sec were compared. Simulation results showed that there was no clear difference in the maximum temperature between the circular focus and the elliptical shape, but the heating and cooling rates were different. The simulation result for a laser beam rotating in a circular pattern with a radius of 5 mm showed an asymmetric temperature rise due to the combination of linear and rotational motion. At points where the rotational and linear speeds combined, the temperature gradually rose and reached the maximum temperature; whereas at points where the rotational and linear speeds were attenuated, the temperature tended to gradually decrease after reaching the maximum temperature. Based on the results of this study, the authors expect to be able to optimize laser material processing by designing patterns of laser beams.

Sensitivity of Aerosol Optical Parameters on the Atmospheric Radiative Heating Rate (에어로졸 광학변수가 대기복사가열률 산정에 미치는 민감도 분석)

  • Kim, Sang-Woo;Choi, In-Jin;Yoon, Soon-Chang;Kim, Yumi
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • We estimate atmospheric radiative heating effect of aerosols, based on AErosol RObotic NETwork (AERONET) and lidar observations and radiative transfer calculations. The column radiation model (CRM) is modified to ingest the AERONET measured variables (aerosol optical depth, single scattering albedo, and asymmetric parameter) and subsequently calculate the optical parameters at the 19 bands from the data obtained at four wavelengths. The aerosol radiative forcing at the surface and the top of the atmosphere, and atmospheric absorption on pollution (April 15, 2001) and dust (April 17~18, 2001) days are 3~4 times greater than those on clear-sky days (April 14 and 16, 2001). The atmospheric radiative heating rate (${\Delta}H$) and heating rate by aerosols (${\Delta}H_{aerosol}$) are estimated to be about $3\;K\;day^{-1}$ and $1{\sim}3\;K\;day^{-1}$ for pollution and dust aerosol layers. The sensitivity test showed that a 10% uncertainty in the single scattering albedo results in 30% uncertainties in aerosol radiative forcing at the surface and at the top of the atmosphere and 60% uncertainties in atmospheric forcing, thereby translated to about 35% uncertainties in ${\Delta}H$. This result suggests that atmospheric radiative heating is largely determined by the amount of light-absorbing aerosols.