• Title/Summary/Keyword: Asymmetric Ring Opening

Search Result 15, Processing Time 0.02 seconds

Synthesis of Highly Enantiomerically Enriched Arenesulfonic Acid 2-Hydroxy Esters via Kinetic Resolution of Terminal Epoxides (속도론적 분할법을 통한 말단 에폭사이드로부터 고광학순도의 아렌술폰산 2-하이드록시 에스터의 합성)

  • Lee, Yae Won;Yang, Hee Chun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.490-494
    • /
    • 2016
  • This paper describes the very efficient and highly enantioselective ring opening of terminal epoxides with alkyl and arene sulfonic acid. The dinuclear chiral (salen) Co complexes bearing Lewis acids of Al, Ga and In catalyze the reaction enantioselectively in the presence of tetrabutylammonium chloride using tert-butyl methyl ether as a solvent. The variation of the anion of the tetra butyl ammonium salt has significant impact on the reactivity and selectivity of the asymmetric ring opening of phenyl glycidyl ether with p-toluenesulfonic acid. The order of reactivity and selectivity was found to be $Cl^-$ > $l^-$ > $Br^-$ > $OH^-$. Strong synergistic effects of the different Lewis acid centers of Co-Al, Co-Ga and Co-In complexes were observed in the catalytic process. The dinuclear chiral salen catalyst containing $AlCl_3$ was found to be most active and highly enantioselective (91% ee).

Asymmetric Catalytic Activity of Mesoporous Mordenite containing Polymeric Chiral Salen Complexes in the Mesopore System (폴리머 키랄 살렌을 함유한 메조세공 모더나이트의 비대칭 촉매 활성)

  • Guo, Xiao-Feng;Kim, Yong-Suk;Kawthekar, Rahul B.;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.279-284
    • /
    • 2009
  • The formation of mesoporous pores in the microporous mordenite crystals was performed by controlled silica extraction on alkaline treatment. Inner tunable mesopore size could be controlled by changing the concentration of alkaline solution. The pore structure of mordenite zeolite was studied by instrumental analysis after alkaline-treatment. To obtain the cage type mesopores, Ti-coating on the ourside mordenite crystals before alkaline treatment was investigated to be the most effective. Polymeric chiral salen Co (III) complexes were successfully encapsulated in mesoporous mordenite zeolite by "ship-in-a-bottle" method. The heterogeneous catalyst could be applied in asymmetric ring opening of epichlorohydrine by water. It showed very excellent enantioselectivity with a high yield in the catalysis.

Accelerating Effects of Ultrasonic Irradiation on Reaction Rates for the Asymmetric Ring Opening Reaction of Epoxides (초음파 조사에 의한 에폭사이드 비대칭 고리열림 반응의 속도 증진 효과)

  • Lee, Yae Won;Park, Geun Woo;Kim, Geon Joong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.365-370
    • /
    • 2019
  • In this study, effects of the ultrasonic irradiation during the reaction process were investigated for the enantioselective kinetic resolution (EKR) reaction of racemic epoxides in the presence of chiral cobalt salen catalysts, as compared to that of using the conventional mechanical stirring. In order to compare catalytic activities, the chiral cobalt salen complexes having $AlCl_3-$, $BF_3-$ and nitrobenzenesulfonic acid (NBSA) were synthesized and used as catalysts, and then three kinds of the racemic epoxides such as ephichlorohydrine (ECH), epoxy phenoxypropane (EPP) and propylene oxide (PO) were used as reactants. In addition, EKR reactions have been performed using the water and methanol as nucleophiles, respectively. The unique contribution of ultrasonic irradiation as a powerful mixing medium was evaluated in this study to improve the kinetics in comparison to the conventional mechanical agitation during EKR reactions. The reaction time to obtain the highest 99 ee% became shorten more than that of above 60%, when the ultrasonic irradiation was used. This result may be interpreted by the cavitation effect of ultrasound in the solution, generating a powerful shear force for the very violent mixing.

Enantioselective Phenolic Kinetic Resolution of Epoxides Catalyzed by New Chiral Salen Complexes (새로운 구조의 키랄 살렌 촉매상에서 페놀유도체에 의한 에폭사이드의 광학선택적 개환반응)

  • Rahul, B. Kawthekar;Lee, Kwang-Yeon;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.630-635
    • /
    • 2007
  • New chiral Co-salen complexes with one $C_3-^tBu$ group in the structure have been synthesized and applied as a chiral catalyst. A dimeric chiral salen having aluminum group metal salts such as $AlCl_3$ displayed very high catalytic reactivity and enantioselectivity for the asymmetric ring opening of epoxides to synthesize optically pure ${\alpha}$-aryloxy alcohols via phenolic kinetic resolution. The salen complexes immobilized on the inorganic support were also used as effective catalysts in that reaction. The identity of metal salts in the new chiral salen complex has proved to be important in the enantioselective reactions.