• Title/Summary/Keyword: Asymmetric Jet

Search Result 21, Processing Time 0.027 seconds

The Effect of the Y-jet Nozzle Exit Orifice Shape on Asymmetric Spray (Y-jet 노즐의 출구오리피스 형상이 비대칭 분무에 미치는 영향)

  • Baik, Gwang Yeol;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • Y-jet nozzle has a wide fuel flow rate range and turn-down ratio, thus, it is used in industrial boilers, furnace and agricultural atomizer. However, it has asymmetrical spray characteristics due to the nozzle design factors. Therefore, in this study, asymmetric spraying characteristics of the elliptical Y-jet nozzle was studied by using the lab-scale spray apparatus. As a result, the elliptical Y-jet nozzle had lower gas mass flow rate than circular Y-jet nozzle at same gas pressure, because of bigger shear stress due to the wider inner surface at the elliptical Y-jet nozzle. Larger SMD was measured on the elliptical Y-jet nozzle than the circular Y-jet nozzle. When SMD was measured in the X_Axis direction at the same gas mass flow rate, the elliptical Y-jet nozzle with an aspect ratio of 2:1 showed greater asymmetry than the others.

Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape (유입부 비대칭 노즐의 성능연구)

  • Lee Ji-Hyung;Kim Joug-Keun;Lee Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.40-45
    • /
    • 2005
  • Techniques used for throcket motors are mainly classified as fixed nozzles with mechanical exhaust jet interferences on the expansion region (such as jet tabs and jet vanes) and movable nozzles(such as ball&socket md flexible seal). Using the numerical analysis and the cold-flow test, this paper evaluates the performance of supersonic nozzle for asymmetric entrance shape at tilted position of ball&socket nozzle. Numerical results show that the asymmetric effects in the flow fields are gradually diminished up to the nozzle throat and are not noticeable downstream of the nozzle throat. Although the calculated thrust and the lateral force are less than those of cold-flow test, two results show a flirty good agreement.

  • PDF

Instability of High-Speed Impinging Jets(I) (고속 충돌제트의 불안정특성)

  • Gwon, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.452-458
    • /
    • 1998
  • The objective of this study is to obtain the unstable characteristics of the high-speed two-dimensional jet impinging normally onto a flat plate. The study is based on the feedback model and the experiment of the frequency characteristics of the impinging tones. Using the experimental data for the tonal frequencies of the impinging tones the convection speed of the unstable jet is obtained along with all the other features. Three kinds of unstable modes are clarified: asymmetric $A_{1}$ and $A_{2}$ and symmetric S. The condition for the excitation of each mode is found in terms of Strouhal number and Reynolds number. The convection speed is estimated and discussed in comparison with existing theoretical models. It is found that the convection speed increases with frequency when the mode is asymmetric, but decreases when it is symmetric. In addition, the characteristics of the high-speed impinging jet are compared with the low-speed impinging jet.

Turbulent Flow Field Structure of Initially Asymmetric Jets

  • Kim, Kyung-Hoon;Kim, Bong-Whan;Kim, Suk-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1386-1395
    • /
    • 2000
  • The mear field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. There pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the upstream of the pipe exit, secondary flow through the bend mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameter-long straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases.

  • PDF

Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape (유입부 비대칭 노즐의 성능연구)

  • Lee Ji-Hyung;Kim Joug-Keun;Lee Do-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.46-52
    • /
    • 2006
  • Techniques used for thrust vector control in rocket motors are mainly classified nozzles installed mechanical interference on the expansive region of nozzle(such as jet tabs and jet vanes) and movable nozzles(such as ball&socket and flexible seal). Using the numerical analysis and cold-flow test, this paper evaluates the performance of supersonic nozzle with asymmetric entrance shape when the test nozzle, especially ball&socket, is tilted. Numerical result shows that the effect of the asymmetric entrance shape on the flow field is suddenly diminished at the nozzle throat and downstream is mostly free from the effect of asymmetric entrance shape. Although the calculated thrust and lateral force are less than those of cold-flow test, two results show a fairly good agreement. But the cold-flow test results indicate the effective angles calculated from measured forces are not agreement with the geometric angles.

Development Of Four-Dimensional Digital Speckle Tomography For Experimental Analysis Of High-Speed Helium Jet Flow (고속 헬륨 제트 유동의 실험적 분석을 위한 4차원 디지털 스펙클 토모그래피 기법 개발)

  • Ko, Han-Seo;Kim, Yong-Jae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.193-203
    • /
    • 2006
  • A high-speed and initial helium jet flow has been analyzed by a developed four-dimensional digital speckle tomography. Multiple high-speed cameras have been used to capture movements of speckles in multiple angles of view simultaneously because a shape of a nozzle for the jet flow is asymmetric and the initial jet flow is fast and unsteady. The speckle movements between no flow and helium jet flow from the asymmetric nozzle controlled by a solenoid valve have been obtained by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The four-dimensional density fields for the high-speed helium jet flow have been reconstructed from the deflection angles by a developed real-time tomography method.

The Near Field Structure of Initially Asymmetic Jets (비대칭분류의 노즐출구영역에서의 난류유동장 해석)

  • Kim, K.H.;Shin, J.K.;Lee, H.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.38-45
    • /
    • 1999
  • The near field structure of round turbulent jets with initially asymmetric velocity distribution is investigated experimentally. Experiments were carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements were undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distribution of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stress. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend at the upstream of the exit. Three pipes were used for this study: A straight pipe, 90 and 160 degree-bended pipes. Therefore, at the upstream of the pipe exit, the secondary flow through the bend and the mean streamwise velocity distribution could be controlled by changing the curvature of pipes.

  • PDF

A Study on Simultaneous Analysis of Velocity and Density Distributions for High-Speed $CO_{2}$ Flow (고속 이산화탄소 유동장의 속도 및 밀도 동시 분석에 관한 연구)

  • Kim Yong-Jae;Ko Han Seo;Okamoto Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.40-45
    • /
    • 2005
  • Velocity and density distributions of a high-speed and initial $CO_{2}$ jet flow have been analyzed simultaneously by a developed three-dimensional digital speckle tomography and a particle image velocimetry(PIV). Three high-speed cameras have been used for tomography and PIV since a shape of a nozzle for the jet flow is asymmetric and the initial flow is fast and unsteady, The speckle movements between no flow and $CO_{2}$ jet flow have been obtained by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The three-dimensional density fields for the high-speed $CO_{2}$ jet flow have been reconstructed from the deflection angles by a real-time tomography method and the two-dimensional velocity fields have been calculated by a PIV method simultaneously and instantaneously.

  • PDF

Vortex Pairing and Jet-Spreading in an Axisymmetric Jet under Helical Fundamental and Axisymmetric Subharmonic Forcing (헬리컬 기본교란과 축대칭 분수조화교란을 이용한 원형제트에서의 보텍스 병합 및 제트확산)

  • Cho, Sung Kwon;Yoo, Jung Yul;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1610-1624
    • /
    • 1998
  • An axisymmetric jet is forced with two helical fundamental waves of identical frequency spinning in opposite directions and an additional axisymmetric sub harmonic wave. The subharmonic component rapidly grows downstream from subharmonic resonance with the fundamental, significantly depending on the initial phase difference. The variations of the subharmonic amplitude with the initial phase difference show cusp-like shapes. The amplification of the sub harmonic results in 'vortex pairing of helical modes'. Furthermore, azimuthal variation of the amplification induces an asymmetric jet cross-section. When the initial subharmonics is imposed with an initial phase difference close to a critical value, the jet-cross section evolves into a three-lobed shape. One lobe is generated by the enhanced vortex pairing and the other two lobes are generated by the delayed vortex pairing. Thus, it is confirmed that the initial phase difference between the fundamental and the subharmonic plays an important role in controlling the jet cross-section.