• Title/Summary/Keyword: Asymmetric Deformation

Search Result 103, Processing Time 0.022 seconds

Texture of Asymmetrically Rolled AA 3003 Aluminum alloy (비대칭 압연한 AA 3003 합금의 조직 변화)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.332-333
    • /
    • 2007
  • The effect of asymmetric rolling on the recrystallization texture of an AA 3003 Aluminum alloy was investigated by X-ray diffraction. It was found that the texture of asymmetrically rolled sheets prior to subsequent heat treatment promoted the formation of the <111>//ND textures, and remained after heat treatment at $275^{\circ}C$ during 20 min in salt bath condition.

  • PDF

Preform Design for Forging of a PIM Connecting Rod (소결분말 콘넥팅로드 단조의 예비성형체 설계)

  • 박종진
    • Journal of Powder Materials
    • /
    • v.2 no.1
    • /
    • pp.19-28
    • /
    • 1995
  • Powder forging is a combined technology of powder metallurgy and precision hot forging. Recently, the technology is developing rapidly because of its economic merits, especially in automotive part manufacturing. In the present study, the finite element technique was developed to predict density variation during P/M forging and the technique was applied to analysis of forging of a P/M connecting rod. Although deformation mode of the connecting rod was quite complex, several sections were selected and analyzed under an assumption of asymmetric or plane strain deformation. It was found that some modifications were necessary on the cross section of the beam portion. Therefore, the cross section was modified repeatedly until a satisfactory result of the analysis was obtained. On the other hand, no modifications were necessary in the ring and the pin portions. It is anticipated that the developed technique can be used to optimize preform design and manufacturing processes in P/M forging, which are highly critical to produce successful products in practice.

  • PDF

Wave dispersion characteristics of porous graphene platelet-reinforced composite shells

  • Ebrahimi, Farzad;Seyfi, Ali;Dabbagh, Ali;Tornabene, Francesco
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.99-107
    • /
    • 2019
  • Wave propagation analysis of a porous graphene platelet reinforced (GPLR) nanocomposite shell is investigated for the first time. The homogenization of the utilized material is procured by extending the Halpin-Tsai relations for the porous nanocomposite. Both symmetric and asymmetric porosity distributions are regarded in this analysis. The equations of the shell's motion are derived according to Hamilton's principle coupled with the kinematic relations of the first-order shear deformation theory of the shells. The obtained governing equations are considered to be solved via an analytical solution which includes two longitudinal and circumferential wave numbers. The accuracy of the presented formulations is examined by comparing the results of this method with those reported by former authors. The simulations reveal a stiffness decrease in the cases which porosity influences are regarded. Also, one must pay attention to the effects of longitudinal wave number on the wave dispersion curves of the nanocomposite structure.

Uniformity Improvement of Micromirror Array for Reliable Working Performance as an Optical Modulator in the Maskless Photolithography System

  • Lee, Kook-Nyung;Kim, Yong-Kweon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.132-139
    • /
    • 2001
  • We considered the uniformity of fabricated micromirror arrays by characterizing the fabrication process and calculating the appropriate driving voltages of micromirrors used as virtual photomask in maskless photolithography. The uniformity of the micromirror array in terms of driving voltage and optical characteristics is adversely affected by factors, such as the air gap between the bottom electrode and the mirror plate, the spring shape and the deformation of the mirror plate or torsion spring. The thickness deviation of the photoresist sacrificial layer, the misalignment between mirror plate and bottom electrode, the aluminum deposition condition used to produce the spring and the mirror plate, and initial mirror deflection were identified as key factors. Their importance lies in the fact that they are related to air gap deviations under the mirror plate, asymmetric driving voltages in left and right mirror directions, and the deformation of the Al sring or mirror plate after removal of the sacrificial layer. The plasma ashing conditions used for removing the sacrificial layer also contributed to the deformation of the mirror plate and spring. Driving voltages were calculated for the pixel operation of the micromirror array, and the non-uniform characteristics of fabricated micromirrors were taken into consideration to improve driving performance reliability.

  • PDF

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.

Stress-Dependent Failure Criteria for Marine Silty Sand Subject to Cyclic Loading (반복하중을 받는 해양 실트질 모래의 응력기반 파괴기준)

  • Ryu, Tae Gyung;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.15-23
    • /
    • 2015
  • An experimental study has been conducted to evaluate the effects of average and cyclic shear stresses on the undrained failure behaviors of dense marine silty sand by using the Cyclic Direct Simple Shear apparatus. The results show that when the average shear stress ratio is zero, symmetric cyclic shear deformation is the major component of deformation, and permanent shear deformation is relatively small. On the other hand, when the average shear stress ratio is larger than zero, asymmetric permanent shear deformation is the major component, and cyclic shear deformation does not change much as the number of cyclic loads increases. The average shear stress ratio has less effects on the number of cyclic loads needed to fail, as compared with the cyclic shear stress ratio. The proposed stress-dependent failure contour can effectively be used to assess the cyclic shear strength of soil beneath the foundation for the design of offshore structures.

Case study on stability performance of asymmetric steel arch bridge with inclined arch ribs

  • Hu, Xinke;Xie, Xu;Tang, Zhanzhan;Shen, Yonggang;Wu, Pu;Song, Lianfeng
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.273-288
    • /
    • 2015
  • As one of the most common failure types of arch bridges, stability is one of the critical aspects for the design of arch bridges. Using 3D finite element model in ABAQUS, this paper has studied the stability performance of an arch bridge with inclined arch ribs and hangers, and the analysis also took the effects of geometrical and material nonlinearity into account. The impact of local buckling and residual stress of steel plates on global stability and the applicability of fiber model in stability analysis for steel arch bridges were also investigated. The results demonstrate an excellent stability of the arch bridge because of the transverse constraint provided by transversely-inclined hangers. The distortion of cross section, local buckling and residual stress of ribs has an insignificant effect on the stability of the structure, and the accurate ultimate strength may be obtained from a fiber model analysis. This study also shows that the yielding of the arch ribs has a significant impact on the ultimate capacity of the structure, and the bearing capacity may also be approximately estimated by the initial yield strength of the arch rib.

A Study of Unstable Phenomenon of Flow Truss Dome Structure with Asymmetric Load Modes (Flow Truss Dome 구조물의 비대칭 하중모드에 따른 불안정 현상에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.4 s.6
    • /
    • pp.61-76
    • /
    • 2002
  • The structure system that is discreterized by continuous shells is usually used to make a large space structures and these structures show the collapse mechanisms that are captured at over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. Moreover, resist force of structure can be reduced by initial condition and initial imperfection significantly. In order to investigate the instability of shell structures, the finite deformation theory can be applied and it becomes a nonlinear mathematics in which use equation of tangential stiffness incrementally. With an initial imperfection, using simple example and Flow Truss Dome, the buckling characteristics of space truss is main purpose of this paper, and unstable behavior is studied by proposed the numerical method. Also, by using MIDAS, this research work analyzes displacements and inner forces as the design load of model, and the ratio of buckling load of design load is investigated.

  • PDF

Seismic vibration control of an innovative self-centering damper using confined SMA core

  • Qiu, Canxing;Gong, Zhaohui;Peng, Changle;Li, Han
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.241-254
    • /
    • 2020
  • Using confined shape memory alloy (SMA) bar or plate, this study proposes an innovative self-centering damper. The damper is essentially properly machined SMA core, i.e., bar or plate, that encased in buckling-restrained device. To prove the design concept, cyclic loading tests were carried out. According to the test results, the damper exhibited desired flag-shape hysteretic behaviors upon both tension and compression actions, although asymmetric behavior is noted. Based on the experimental data, the hysteretic parameters that interested by seismic applications, such as the strength, stiffness, equivalent damping ratio and recentering capacity, are quantified. Processed in the Matlab/Simulink environment, a preliminary evaluation of the seismic control effect for this damper was conducted. The proposed damper was placed at the first story of a multi-story frame and then the original and controlled structures were subjected to earthquake excitations. The numerical outcome indicated the damper is effective in controlling seismic deformation demands. Besides, a companion SMA damper which represents a popular type in previous studies is also introduced in the analysis to further reveal the seismic control characteristics of the newly proposed damper. In current case, it was found that although the current SMA damper shows asymmetric tension-compression behavior, it successfully contributes comparable seismic control effect as those having symmetrical cyclic behavior. Additionally, the proposed damper even shows better global performance in controlling acceleration demands. Thus, this paper reduces the concern of using SMA dampers with asymmetric cyclic behavior to a certain degree.