• Title/Summary/Keyword: Asymmetric Current Distribution

Search Result 43, Processing Time 0.025 seconds

A Study on the Developing Method of HIF Monitoring Data using Wavelet Coefficient (웨이브렛 계수를 이용한 고저항 지락고장 감시데이터 산출방법 연구)

  • Jung, Young-Beom;Jung, Yeon-Ha;Kim, Kil-Sin;Lee, Byung-Sung;Bae, Seung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • As the increasing HIF(High Impedance Fault) with the arc cannot be easily detected for the low fault current magnitude compared to actual load in distribution line. However, the arcing current shows that the magnitude varies with time and the signal is asymmetric. In addition, discontinuous changes occur at starting point of arc. Considering these characteristics, wavelet transformation of actual current data shows difference between before and after the fault. Althogh raw data(detail coefficient) of wavelet transform may not be directly applied to HIF detection logic in a device, there are several developing methods of HIF monitoring data using the original wavelet coefficients. In this paper, a simple and effective developing methods of HIF monitoring data were analized by using the signal data through an actual HIF experiment to apply them to economic devices. The methods using the sumation of the wavelet coefficient squares in one cycle of the fundamental frequency as the energies of the wavelet coefficeits and the sumation of the absolute values were compared. Besides, the improved method which less occupies H/W resouces and can be applied to field detection devices was proposed. and also Verification of this HIF detection method through field test on distribution system in KEPCO power testing center was performed.

EFFECTS OF THE RING CURRENT ON ULF WAVES IN THE MAGNETOSPHERE (지구자기구의 극초저주파수 파에 대한 RING CURRENT의 효과)

  • 김관혁;이동훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.93-106
    • /
    • 1994
  • A three-dimensional box model has been developed to study the MHD wave coupling in the magnetosphere. In this model, the effects of the ring current are included by assuming the pressure gradients in the MHD equations. It is found that the axisymmetric ring current may play an important role in producing spectral noises in compressional waves, while field line resonances have no such disturbances. These results may explain the current observational characteristics that compressional cavity modes hardly appear in the satellite experiment, while field line resonances often occur. Our numerical resluts also suggest that any discrete spectral peaks such as the global cavity modes can hardly occur where the pressure distribution of the ring current becomes important. The continuous band of transverse waves is found to be unperturbed until the ring current becomes significantly asymmetric with respect to the dipole axis. In addition, our results in the absence of the pressure gradient are found to be consistent with the previous results from the box-like and dipole models.

  • PDF

Effects of Annealing Temperature on the Local Current Conduction of Ferromagnetic Tunnel Junction (열처리에 따른 강자성 터널링 접합의 국소전도특성)

  • Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku;Li, Ying;Park, Bum-Chan;Kim, Cheol-Gi;Kim, Chong-Oh
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.233-238
    • /
    • 2003
  • Ferromagnetic tunnel junctions, Ta/Cu/Ta/NiFe/Cu/$Mn_{75}$ $Ir_{25}$ $Co_{70}$ $Fe_{30}$/Al-oxide, were fabricated by do magnetron sputtering and plasma oxidation process. The effect of annealing temperature on the local transport properties of the ferromagnetic tunnel junctions was studied using contact-mode Atomic Force Microscopy (AFM). The current images reflected the distribution of the barrier height determined by local I-V analysis. The contrast of the current image became more homogeneous and smooth after annealing at $280^{\circ}C$. And the average barrier height $\phi_{ave}$ increased and its standard deviation $\sigma_{\phi}$ X decreased. For the cases of the annealing temperature more than $300^{\circ}C$, the contrast of the current image became large again. And the average barrier height $\phi_{ave}$ decreased and its standard deviation $\sigma_{\phi}$ increased. Also, the current histogram had a long tail in the high current region and became asymmetric. This result means the generation of the leakage current that is resulted from the local generation of a low barrier height region. In order to obtain the high tunnel magnetoresistance(TMR) ratio, the increase of the average barrier height and the decrease of the barrier height fluctuation must be strictly controlled.led.

Determination of the Forming Limit Strain of Sheet Metal Using Inverse Quartic Curve Fitting (역4차식 곡선근사에 의한 판재 성형한계변형률의 결정)

  • Lee, J.S.;Kim, J.D.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.328-333
    • /
    • 2013
  • The current study aims to determine the limit strains more accurately and reasonably when producing a forming limit curve (FLC) from experiments. The international standard ISO 12004-2 in its recent version (2008) states that the limit major strain should be determined by using the best-fit inverse second-order parabola through the experimental strain distribution. However, in cases where fracture does not occur at the center of the specimen, due to insufficient lubrication, the inverse parabola does not give a realistic fit because of its intrinsic symmetry in shape. In this study it is demonstrated that an inverse quartic function can give a much better fit than an inverse parabola in almost all FLC test samples showing asymmetric strain distributions. Using a quartic fit creates more reliable FLCs.

Analysis of the Closed-Loop Supply Chain Focusing on Power Batteries in China

  • Chen, Jinhui;Jin, Chan-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.84-92
    • /
    • 2021
  • The research on waste power batteries in China in the past ten years reveals that the power battery recycling industry is enormous but marred with several challenges. A study of China's current power battery closed-loop supply chain revealed some issues in the power battery recycling industry, such as imperfect supply chain, small recycling scale, asymmetric information, and imperfect profit distribution mechanism. This paper uses the theory of corporate social responsibility and consumer choice to propose a closed-loop network of power batteries based on block chain technology and analyzes the existing closed-loop supply chain of power batteries. Consequently, this study provides a new idea for developing the power battery closed-loop supply chain by proposing the closed-loop network of power batteries based on blockchain technology.

Analysis of the Closed-Loop Supply Chain Focusing on Power Batteries in China

  • Chen, Jinhui;Bayarsaikhan, Bayarsaikhan;Nam, Sootae;Jin, Chanyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.570-571
    • /
    • 2021
  • The research on waste power batteries in China in the past ten years reveals that the power battery recycling industry is enormous but marred with several challenges. A study of China's current power battery closed-loop supply chain revealed some issues in the power battery recycling industry, such as imperfect supply chain, small recycling scale, asymmetric information, and imperfect profit distribution mechanism. This paper uses the theory of corporate social responsibility and consumer choice to propose a closed-loop network of power batteries based on block chain technology and analyzes the existing closed-loop supply chain of power batteries. Consequently, this study provides a new idea for developing the power battery closed-loop supply chain by proposing the closed-loop network of power batteries based on blockchain technology

  • PDF

Information Arrival between Price Change and Trading Volume in Crude Palm Oil Futures Market: A Non-linear Approach

  • Go, You-How;Lau, Wee-Yeap
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.3 no.3
    • /
    • pp.79-91
    • /
    • 2016
  • This paper is the first of its kind using a non-linear approach based on cross-correlation function (CCF) to investigate the information arrival hypothesis in crude palm oil (CPO) futures market. Based on daily data from 1986 to 2010, our empirical results reveal that: First, the volume of volatility is not a proxy of information flow. Second, dependence causality running from current return to future volume in conditional variance exhibit an asymmetric pattern of time span with different signs of correlation between price and volume series. This finding indicates the presence of noise traders' hypothesis of price-volume interaction in CPO futures market. Both findings suggest that this futures market is weak-form inefficiency. In terms of investors' behavior, they tend to change their expectations on current return based on errors made in previous trade in generating abnormal volume in the subsequent period. As implied, it is advisable for the investors devise their future trading strategies according to time span and changes of return.

Process Design of Multi-Pass Shape Drawing of Wire with Asymmetric Trapezoid Profiles (비대칭 사다리꼴 단면 선재의 다단 인발 공정설계)

  • Ji, S.I.;Lee, K.H.;Hong, L.S.;Jung, J.Y.;Kim, J.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • The objective of the current study is to determine cross-sectional profile of intermediate dies in order to improve the plastic strain homogeneity which directly affects not only the dimensional accuracy but also the mechanical properties of final product by redesigning the intermediate dies using the conventional electric field analysis (EFA) method. Initially, the multi-pass shape wire drawing was designed by using the equivalent potential lines from EFA. The area reduction ratio was calculated from the number of passes in multi-pass shape wire drawing but constrained by the capacity of the drawing machine and the drawing force. In order to compensate for a concentration of strain in a region of the cross section of the wire, the process for multi pass wire drawing from initial round material to an intermediate die was redesigned again using the electric field analysis. Both drawing process designs were simulated by the finite element method in which the strain distribution and standard deviation plastic strain of the cross section of drawn wires were examined.

Process Design, Fabrication, and Evaluation of Cold Drawn SUS304N Coil Wedge (SUS304N 코일 웨지 인발 공정의 설계, 제조 및 평가)

  • Jung, J.E.;Kim, S.J.;Bae, S.;Namkung, J.;Kim, S.M.;Kim, S.I.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.212-218
    • /
    • 2019
  • In this study, the first drawing die for the production of coil wedge is redesigned in order to enhance properties such as dimensional accuracy, dimensional uniformity, non-magnetism, and residual stress. The equivalent strain distribution is observed to be asymmetric at certain corners of the product and un-filling of material is also observed at the same location, based on the results of FEM simulation for the current drawing process. Additionally, a relatively huge amount of deformation is concentrated on the surface of the reference product leading to an increase in magnetic component and surface residual stress. After re-designing the cross-section of the first drawing step process conformed to relatively higher amount of reduction ratio, reduction of both surface residual stress and the volume fraction of magnetic component could be achieved for the finally-drawn coil wedge product.

Efficient simulation method for a gas inflow to the central molecular zone

  • Shin, Jihye;Kim, Sungsoo S.;Baba, Junichi;Saitoh, Takayuki R.;Chun, Kyungwon;Hozumi, Shunsuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.59.1-59.1
    • /
    • 2015
  • We present hydrodynamic simulations of gas clouds that inflowing from the disk to a few hundred parsec region of the Milky Way. Realistic Galactic structures are included in our simulations by thousands of multipole expansions that describe 6.4 million stellar particles of a self-consistent Galaxy simulation (Baba, Saitoh & Wada, in prep.). We find that a hybrid multipole expansion model with two different basis sets and a thick disk correction well reproduces the overall structures of the Milky Way. We find that the nuclear ring evolves into 240 pc at T~1500 Myr, regardless of the initial size. For most of simulation runs, gas inflow rate to the nuclear region is equilibrated as ~0.02 Msun/yr, and thus accumulated gas mass and star formation activity is stabilized as $6{\times}10^7Msun$ and ~0.02M/yr, respectively. These stabilized values are in a good agreement with estimations for the CMZ. The nuclear ring is off-centered to the Galactic center by the lopsided central mass distribution of the Galaxy model, and thus an asymmetric mass distribution is arose accordingly. The lopsidedness also leads the nuclear ring to be tilted to the Galactic plane and to precess along the Galaxy rotation. In early evolutionary stage when gas clouds start to inflow and form the nuclear ring, the z-directional oscillations of the gas clouds results in the twisted, infinity-shaped nuclear ring. Since the infinity-shaped feature is transient only for first 100 Myr, the current infinity-shape observed in the CMZ may indicate that the CMZ forms quite recently.

  • PDF