• Title/Summary/Keyword: Astronomical and space-research instrumentation

Search Result 26, Processing Time 0.032 seconds

Opening New Horizons with the L4 Mission: Vision and Plan

  • Kyung-Suk Cho;Junga Hwang;Jeong-Yeol Han;Seong-Hwan Choi;Sung-Hong Park;Eun-Kyung Lim;Rok-Soon Kim;Jungjoon Seough;Jong-Dae Sohn;Donguk Song;Jae-Young Kwak;Yukinaga Miyashita;Ji-Hye Baek;Jaejin Lee;Jinsung Lee;Kwangsun Ryu;Jongho Seon;Ho Jin;Sung-Jun Ye;Yong-Jae, Moon;Dae-Young Lee;Peter H. Yoon;Thiem Hoang;Veerle Sterken;Bhuwan Joshi;Chang-Han Lee;Jongjin Jang;Jae-Hwee Doh;Hwayeong Kim;Hyeon-Jeong Park;Natchimuthuk Gopalswamy;Talaat Elsayed;John Lee
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.263-275
    • /
    • 2023
  • The Sun-Earth Lagrange point L4 is considered as one of the unique places where the solar activity and heliospheric environment can be observed in a continuous and comprehensive manner. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of the Sun-Earth and Sun-Moon connections from he perspective of remote-sensing observations. In-situ measurements of the solar radiation, solar wind, and heliospheric magnetic field are critical components necessary for monitoring and forecasting the radiation environment as it relates to the issue of safe human exploration of the Moon and Mars. A dust detector on the ram side of the spacecraft allows for an unprecedented detection of local dust and its interactions with the heliosphere. The purpose of the present paper is to emphasize the importance of L4 observations as well as to outline a strategy for the planned L4 mission with remote and in-situ payloads onboard a Korean spacecraft. It is expected that the Korean L4 mission can significantly contribute to improving the space weather forecasting capability by enhancing the understanding of heliosphere through comprehensive and coordinated observations of the heliosphere at multi-points with other existing or planned L1 and L5 missions.

FOCAL REDUCER FOR CQUEAN (Camera for QUasars in EArly uNiverse)

  • Lim, Juhee;Chang, Seunghyuk;Pak, Soojong;Kim, Youngju;Park, Won-Kee;Im, Myungshin
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.4
    • /
    • pp.161-172
    • /
    • 2013
  • A focal reducer is developed for CQUEAN (Camera for QUasars in EArly uNiverse), which is a CCD imaging system on the 2.1 m Otto Struve telescope at the McDonald observatory. It allows CQUEAN to secure a wider field of view by reducing the effective focal length by a factor of three. The optical point spread function without seeing effects is designed to be within one pixel ($0.283^{\prime\prime}$) over the field of view of $4.82^{\prime}{\times}4.82^{\prime}$ in optimum wavelength ranges of 0.8-1.1 ${\mu}m$. In this paper, we describe and discuss the characteristics of optical design, the lens and barrel fabrications and the alignment processes. The observation results show that the image quality of the focal reducer confirms the expectations from the design.

LABORATORY EXPERIMENTS OF OFF-AXIS MIRROR OPTICS OF ALUMINUM FOR SPACE INFRARED MISSIONS

  • Oseki, Shinji;Oyabu, Shinki;Ishihara, Daisuke;Enya, Keigo;Haze, Kanae;Kotani, Takayuki;Kaneda, Hidehiro;Nishiyama, Miho;Abe, Lyu;Yamamuro, Tomoyasu
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.359-361
    • /
    • 2017
  • We report our research on aluminum mirror optics for future infrared astronomical satellites. For space infrared missions, cooling the whole instrument is crucial to suppress the infrared background and detector noise. In this aspect, aluminum is appropriate for cryogenic optics, because the same material can be used for the whole structure of the instrument including optical components thanks to its excellent machinability, which helps to mitigate optical misalignment at low temperatures. We have fabricated aluminum mirrors with ultra-precision machining and measured the wave front errors (WFEs) of the mirrors with a Fizeau interferometer. Based on the power spectral densities of the WFEs, we confirmed that the surface accuracy of all the mirrors satisfied the requirements for the SPICA Coronagraph Instrument. We then integrated the mirrors into an optical system, and examined the image quality of the system with an optical laser. As a result, the total WFE is estimated to be 33 nm (rms) from the Strehl ratio. This is consistent with the WFEs estimated from the measurement of the individual mirrors.

BRIEF REPORTS ON KAISTSAT-4 MISSION ANALYSIS

  • Seon, J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.233-240
    • /
    • 2000
  • Five scientific instruments are planned on KAISTSAT-4 that is scheduled to be launched in 2002. A far ultra-violet imaging spectrograph and a set of space plasma instruments are currently being designed. The imaging spectrograph will make observations of astronomical objects and Earth's upper atmosphere. The plasma instrumentation is capable of fast measuring the thermal magnetosphere plasmas, cold ionospheric plasmas and the Earth's magnetic fields. Major system drivers and constraints on the payloads as well as the spacecraft are identified. A preliminary analysis of the K-4 mission has been undertaken with the system requirements that are derived from the system drivers. Detailed investigation shows that Sun-synchronous orbits with approximate altitudes of 800km are optimal to satisfy the identified requirements. Comparisons with other orbits of different inclinations are also shown. Four operation modes and a daily schedule of spacecraft maneuver are found from the Sun-synchronous orbital model. It is shown that the scientific objectives of K-4 can be achieved with moderate levels of design and operation risks.

  • PDF

Science Instrument Development for the Giant Magellan Telescope

  • Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • The Giant Magellan Telescope (GMT) is a 24.5m diameter optical/infrared telescope. Its seven 8.4m primary mirrors give it a collecting area equivalent to a 21.4m filled aperture. The ten GMT partners are constructing the telescope at the Las Campanas Observatory in Chile with first light planned for the end of 2018. In this paper, we describe the plans for the first-generation focal plane instrumentation for the telescope. The GMTO Corporation has solicited studies for instruments capable of carrying out the broad range of objectives outlined in the GMT Science Case. Six instruments have been selected for 14 month long conceptual design studies. We describe the features of these instruments and give examples of the major science questions that they can address.

  • PDF

A NEW AUTO-GUIDING SYSTEM FOR CQUEAN

  • CHOI, NAHYUN;PARK, WON-KEE;LEE, HYE-IN;JI, TAE-GEUN;JEON, YISEUL;IM, MYUNGSHI;PAK, SOOJONG
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.177-185
    • /
    • 2015
  • We develop a new auto-guiding system for the Camera for QUasars in the EArly uNiverse (CQUEAN). CQUEAN is an optical CCD camera system attached to the 2.1-m Otto-Struve Telescope (OST) at McDonald Observatory, USA. The new auto-guiding system differs from the original one in the following: instead of the cassegrain focus of the OST, it is attached to the finder scope; it has its own filter system for observation of bright targets; and it is controlled with the CQUEAN Auto-guiding Package, a newly developed auto-guiding program. Finder scope commands a very wide field of view at the expense of poorer light gathering power than that of the OST. Based on the star count data and the limiting magnitude of the system, we estimate there are more than 5.9 observable stars with a single FOV using the new auto-guiding CCD camera. An adapter is made to attach the system to the finder scope. The new auto-guiding system successfully guided the OST to obtain science data with CQUEAN during the test run in 2014 February. The FWHM and ellipticity distributions of stellar profiles on CQUEAN, images guided with the new auto-guiding system, indicate similar guiding capabilities with the original auto-guiding system but with slightly poorer guiding performance at longer exposures, as indicated by the position angle distribution. We conclude that the new auto-guiding system has overall similar guiding performance to the original system. The new auto-guiding system will be used for the second generation CQUEAN, but it can be used for other cassegrain instruments of the OST.

AN EVALUATION OF THE SOLAR RADIO BURST LOCATOR (SRBL) AT OVRO

  • HwangBo, J.E.;Bong, Su-Chan;Cho, K.S.;Moon Y.J.;Lee, D.Y.;Park, Y.D.;Gary Dale E.;Dougherty Brian L.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.437-443
    • /
    • 2005
  • The Solar Radio Burst Locator (SRBL) is a spectrometer that can observe solar microwave bursts over a wide band (0.1-18 GHz) as well as detect the burst locations without interferometry or mechanical scanning. Its prototype has been operated at Owens Valley Radio Observatory (OVRO) since 1998. In this study, we have evaluated the capability of the SRBL system in flux and radio burst location measurements. For this, we consider 130 microwave bursts from 2000 to 2002. The SRBL radio fluxes of 53 events were compared with the fluxes from USAF/RSTN and the burst locations of 25 events were compared with the optical flare locations. From this study, we found: (1) there is a relatively good correlation (r = 0.9) between SRBL flux and RSTN flux; (2) the mean location error is about 8.4 arcmin and the location error (4.7 arcmin) of single source events is much smaller than that (14.9 arcmin) of multiple source events; (3) the minimum location error usually occurred just after the starting time of burst, mostly within 10 seconds; (4) there is a possible anti-correlation (r = -0.4) between the pointing error of SRBL antenna and the location error. The anti-correlation becomes more evident (r=-0.9) for 6 strong single source events associated with X-class flares. Our results show that the flux measurement of SRBL is consistent with that of RSTN, and the mean location error of SRBL is estimated to be about 5 arcmin for single source events.

CONCEPTUAL STRUCTURAL DESIGN AND COMPARATIVE POWER SYSTEM ANALYSIS OF OZONE DYNAMICS INVESTIGATION NANO-SATELLITE (ODIN)

  • Park, Nuri;Hwang, Euidong;Kim, Yeonju;Park, Yeongju;Kang, Deokhun;Kim, Jonghoon;Hong, Ik-seon;Jo, Gyeongbok;Song, Hosub;Min, Kyoung Wook;Yi, Yu
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • The Ozone Dynamics Investigation Nano-Satellite (ODIN) is a CubeSat design proposed by Chungnam National University as contribution to the CubeSat Competition 2019 sponsored by the Korean Aerospace Research Institute (KARI). The main objectives of ODIN are (1) to observe the polar ozone column density (latitude range of 60° to 80° in both hemispheres) and (2) to investigate the chemical dynamics between stratospheric ozone and ozone depleting substances (ODSs) through spectroscopy of the terrestrial atmosphere. For the operation of ODIN, a highly efficient power system designed for the specific orbit is required. We present the conceptual structural design of ODIN and an analysis of power generation in a sun synchronous orbit (SSO) using two different configurations of 3U solar panels (a deployed model and a non-deployed model). The deployed solar panel model generates 189.7 W through one day which consists of 14 orbit cycles, while the non-deployed solar panel model generates 152.6 W. Both models generate enough power for ODIN and the calculation suggests that the deployed solar panel model can generate slightly more power than the non-deployed solar panel model in a single orbit cycle. We eventually selected the non-deployed solar panel model for our design because of its robustness against vibration during the launch sequence and the capability of stable power generation through a whole day cycle.

AUTO-GUIDING SYSTEM FOR CQUEAN (CAMERA FOR QUASARS IN EARLY UNIVERSE)

  • Kim, Eun-Bin;Park, Won-Kee;Jeong, Hyeon-Ju;Kim, Jin-Young;Kuehne, John;Kim, Dong-Han;Kim, Han-Geun;Odoms, Peter S.;Chang, Seung-Hyuk;Im, Myung-Shin;Pak, Soo-Jong
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.4
    • /
    • pp.115-123
    • /
    • 2011
  • To perform imaging observations of optically red objects such as high redshift quasars and brown dwarfs, the Center for the Exploration of the Origin of the Universe (CEOU) recently developed an optical CCD camera, Camera for QUasars in EArly uNiverse (CQUEAN), which is sensitive at 0.7-1.1 ${\mu}m$. To enable observations with long exposures, we develop an auto-guiding system for CQUEAN. This system consists of an off-axis mirror, a baffle, a CCD camera, a motor and a differential decelerator. To increase the number of available guiding stars, we design a rotating mechanism for the off-axis guiding camera. The guiding field can be scanned along the 10 arcmin ring offset from the optical axis of the telescope. Combined with the auto-guiding software of the McDonald Observatory, we confirm that a stable image can be obtained with an exposure time as long as 1200 seconds.

RENOVATION OF SEOUL RADIO ASTRONOMY OBSERVATORY AND ITS FIRST MILLIMETER VLBI OBSERVATIONS

  • Naeun, Shin;Yong-Sun, Park;Do-Young, Byun;Jinguk, Seo;Dongkok, Kim;Cheulhong, Min;Hyunwoo, Kang;Keiichi, Asada;Wen-Ping, Lo;Sascha, Trippe
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.6
    • /
    • pp.207-213
    • /
    • 2022
  • The Seoul Radio Astronomy Observatory (SRAO) operates a 6.1-meter radio telescope on the Gwanak campus of Seoul National University. We present the efforts to reform SRAO to a Very Long Baseline Interferometry (VLBI) station, motivated by recent achievements by millimeter interferometer networks such as Event Horizon Telescope, East Asia VLBI Network, and Korean VLBI Network (KVN). For this goal, we installed a receiver that had been used in the Combined Array for Research in Millimeter-wave Astronomy and a digital backend, including an H-maser clock. The existing hardware and software were also revised, which had been dedicated only to single-dish operations. After several years of preparations and test observations in 1 and 3-millimeter bands, a fringe was successfully detected toward 3C 84 in 86 GHz in June 2022 for a baseline between SRAO and KVN Ulsan station separated by 300 km. Thanks to the dual frequency operation of the receiver, the VLBI observations will soon be extended to the 1 mm band and verify the frequency phase referencing technique between 1 and 3-millimeter bands.