• Title/Summary/Keyword: Astronomical Field

Search Result 1,126, Processing Time 0.03 seconds

Preliminary Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Park, Chan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.102-102
    • /
    • 2014
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument onboard NEXTSat-1 which is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions in order to study the cosmic star formation history in local and distant universe. After the Preliminary Design Review, we have fixed major specifications of the NISS. The off-axis optical design with 15cm apertureis optimized to obtain a wide field of view ($2deg.{\times}2deg.$), while minimizing the sensitivity loss. The opto-mechanical structure of the NISS was designed to be safe enough to endure in the launching condition as well as the space environment. The tolerance analysis was performed to cover the wide wavelength range from 0.95 to $3.8{\mu}m$ and to reduce the degradation of optical performance due to thermal variation at the target temperature, 200K. The $1k{\times}1k$ infrared sensor is operated in the dewar at 80K stage. We confirmed that the NISS can be cooled down to below 200K in the nominal orbit through a radiative cooling. Here, we report the preliminary design of the NISS.

  • PDF

System Development of Cubsat SIGMA(KHUSAT-3)

  • Shin, Jehyuck;Lee, Seongwhan;Lee, Jung-Kyu;Lee, Hyojeong;Lee, Jeongho;Seo, Junwon;Shin, Youra;Jeong, Seonyeong;Cheon, Junghoon;Kim, Hanjun;Lim, Jeonghyun;Lee, Junmin;Jin, Ho;Nam, Uk-Won;Kim, Sunghwan;Lee, Regina;Kim, Hyomin;Lessard, Marc R.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.106-106
    • /
    • 2014
  • SIGMA (Scientific cubesat with Instrument for Global Magnetic field and rAdiation)는 근 지구공간에서 우주방사선량 측정과 자기장 변화 검출의 과학적 목적과 교육적 목적을 가지고 개발하고 있는 초소형 큐브위성이다. $100mm{\times}100mm{\times}340.5mm$의 크기로 약 3.6 kg의 무게를 가지며, 탑재체는 방사선에 대하여 인체와 동일한 산란 흡수 특성을 가진 Tissue Equivalent Proportional Counter (TEPC)와 자기장 측정을 위한 Magnetometer (Mag)이다. 위성체는 구조계, 자세제어계, 전력계, 명령 및 데이터처리계, 통신계로 구성되어있다. 구조계는 위성의 뼈대인 Chassis와 Mag deployer로 이루어져있고, 위성의 안정적인 자세유지를 목적으로 Attitude Control System (ACS) Board와 Torque Coil이 자세제어계로 구성된다. 전력의 생산과 공급 및 충전은 태양전지판과 Electrical Power System (EPS), 리튬 배터리로 구성된 전력계에서 이뤄지며, 명령 및 데이터처리계는 On Board Computer (OBC)와 Instrument Interface board (IIB)를 중심으로 서브시스템의 명령체계와 데이터처리를 다룬다. 통신계는 Uplink인 VHF 안테나와 Downlink인 UHF, S-band 안테나로 구성되며 지상과 명령을 송수신한다. SIGMA는 타임인터럽트 기능을 활용한 Flight Software (FSW)로 운용되며 임무에 따른 6가지 모드의 시나리오로 위성을 운용한다. 이에 SIGMA의 개발과 테스트 결과를 소개한다. 본 큐브위성 개발기술을 바탕으로 향후 천문관측용 위성에도 활용할 예정이다.

  • PDF

The Flight Model of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Won-Kee;Kim, Il-Joong;Park, Youngsik;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Mingyu;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.64.3-65
    • /
    • 2016
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared instrument optimized to the Next Generation of small satellite series (NEXTSat). The capability of both imaging and low spectral resolution spectroscopy in the near-infrared range is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. For those purposes, the main observational targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design is optimized to have a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. Two linear variable filters are used to realize the imaging spectroscopy with the spectral resolution of ~20. The mechanical structure is considered to endure the launching condition as well as the space environment. The compact dewar is confirmed to operate the infrared detector as well as filters at 80K stage. The electronics is tested to obtain and process the signal from infrared sensor and to communicate with the satellite. After the test and calibration of the engineering qualification model (EQM), the flight model of the NSS is assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. Here, we report the test results of the flight model of the NISS.

  • PDF

A Deep Optical Photometric Study of the Massive Young Open Clusters in the Sagittarius-Carina Spiral Arm

  • Hur, Hyeonoh
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.44.1-44.1
    • /
    • 2016
  • The Sagittarius-Carina spiral arm in the Galaxy contains several massive young open clusters. We present a deep optical photometric study on the massive young open clusters in the Sagittarius-Carina arm, Westerlund 2 and the young open clusters in the ${\eta}$ Carina nebula. Westerlund 2 is a less studied starburst-type cluster in the Galaxy. An abnormal reddening law for the intracluster medium of the young starburst-type cluster Westerlund 2 is determined to be $R_{V,cl}=4.14{\pm}0.08$. The distance modulus is determined from zero-age main-sequence fitting to the reddening-corrected color-magnitude diagrams of the early-type members to be $V_0-M_V=13.9{\pm}0.14mag$. The pre-main sequence (PMS) members of Westerlund 2 are selected by identifying the optical counterparts of X-ray emission sources from the Chandra X-ray observation and mid-infrared emission sources from the Spitzer/IRAC (the Infrared Array Camera) observation. The initial mass function (IMF) shows a slightly flat slope of ${\Gamma}=-1.1{\pm}0.1$ down to $5M_{\odot}$. The age of Westerlund 2 is estimated to be. 1.5 Myr from the main-sequence turn-on luminosity and the age distribution of PMS stars. The ${\eta}$ Carina nebula is the best laboratory for the investigation of the Galactic massive stars and low-mass star formation under the influence of numerous massive stars. We have performed deep wide-field CCD photometry of stars in the ${\eta}$ Carina nebula to determine the reddening law, distance, and the IMF of the clusters in the nebula. We present VRI and $H{\alpha}$ photometry of 130,571 stars from the images obtained with the 4m telescope at Cerro Tololo Inter-American Observatory (CTIO). RV,cl in the η Carina nebula gradually decreases from the southern part (~4.5, around Trumpler 14 and Trumpler 16) to the northern part around Trumpler 15 (~3.5). Distance to the young open clusters in the ${\eta}$ Carina nebula is partly revised based on the zero-age main-sequence fitting to the reddening-corrected color-magnitude diagrams (CMDs) and the (semi-) reddening-independent CMDs. We select the PMS members and candidates by identifying the optical counterparts of X-ray sources from the Chandra Carina Complex Survey and mid-infrared excess emission stars from the Spitzer Vela-Carina survey. From the evolutionary stage of massive stars and PMS stars, we obtain that the northern young open cluster Trumpler 15 is distinctively older than the southern young open clusters, Trumpler 14 (${\leq}2.5 Myr$) and Trumpler 16 (2.5-3.5 Myr). The slopes of the IMF of Trumpler 14, Trumpler 15, and Trumpler 16 are determined to be $-1.2{\pm}0.1$, $-1.5{\pm}0.3$, and $-1.1{\pm}0.1$, respectively. Based on the RV,cl of several young open clusters determined in this work and the previous studies of our group, We suggest that higher RV,cl values are commonly found for very young open clusters with the age of < 4 Myr. We also confirm the correlation between the slope of the IMF and the surface mass density of massive stars.

  • PDF

X-RAY ASTRONOMY EXPERIMENT ON THE INDIAN SATELLITE IRS-P3

  • AGRAWAL P. C.;PAUL B.;RAO A. R.;SHAH M. R.;MCKERJEE K.;VARIA M. N.;YADAV J. S.;DEDHIA D. K.;MALKAR J. P.;SHAH P.;DAMLE S. V.;MARAR T. M. K.;SEETHA S.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.429-432
    • /
    • 1996
  • An x-ray astronomy experiment consisting of three collimated proportional counters and an X-ray Sky Monitor (XSM) was flown aboard the Indian Satellite IRS-P3 launched on March 21, 1996 from SHAR range in India. The Satellite is in a circular orbit of 830 km altitude with an orbital inclination of $98^{\circ}$ and has three axis stabilized pointing capability. Each pointed-mode Proportional Counter (PPC) is a multilayer, multianode unit filled with P-10 gas ($90\%$ Ar + $10\%\;CH_4$) at 800 torr and having an aluminized mylar window of 25 micron thickness. The three PPCs are identical and have a field of view of $2^{\circ}{\times}2^{\circ}$ defined by silver coated aluminium honeycomb collimators. The total effective area of the three PPCs is about 1200 $cm^2$. The PPCs are sensitive in 2-20 keV band. The XSM consists of a pin-hole of 1 $cm^2$ area placed 16 cm above the anode plane of a 32 cm$\times$32 cm position sensitive proportional counter sensitive in 3-8 keV interval. The position of the x-ray events is determined by charge division technique using nichrome wires as anodes. The principal objective of this experiment is to carry out timing studies of x-ray pulsars, x-ray binaries and other rapidly varying x-ray sources. The XSM will be used to detect transient x-ray sources and monitor intensity of bright x-ray binaries. Observations of black-hole binary Cyg X-1 and few other binary sources were carried out in early May and July-August 1996 period. Details of the x-ray detector characteristics are presented and preliminary results from the observations are discussed.

  • PDF

THE INFRARED MEDIUM-DEEP SURVEY. V. A NEW SELECTION STRATEGY FOR QUASARS AT z > 5 BASED ON MEDIUM-BAND OBSERVATIONS WITH SQUEAN

  • JEON, YISEUL;IM, MYUNGSHIN;PAK, SOOJONG;HYUN, MINHEE;KIM, SANGHYUK;KIM, YONGJUNG;LEE, HYE-IN;PARK, WOOJIN
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.25-35
    • /
    • 2016
  • Multiple color selection techniques are successful in identifying quasars from wide-field broadband imaging survey data. Among the quasars that have been discovered so far, however, there is a redshift gap at 5 ≲ z ≲ 5.7 due to the limitations of filter sets in previous studies. In this work, we present a new selection technique of high redshift quasars using a sequence of medium-band filters: nine filters with central wavelengths from 625 to 1025 nm and bandwidths of 50 nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with resolution R ~ 15. By conducting medium-band observations of high redshift quasars at 4.7 ≤ z ≤ 6.0 and brown dwarfs (the main contaminants in high redshift quasar selection) using the SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1-m telescope at the McDonald Observatory, we show that these medium-band filters are superior to multi-color broad-band color section in separating high redshift quasars from brown dwarfs. In addition, we show that redshifts of high redshift quasars can be determined to an accuracy of Δz/(1 + z) = 0.002 - 0.026. The selection technique can be extended to z ~ 7, suggesting that the medium-band observation can be powerful in identifying quasars even at the re-ionization epoch.

BETTI NUMBERS OF GAUSSIAN FIELDS

  • Park, Changbom;Pranav, Pratyush;Chingangbam, Pravabati;Van De Weygaert, Rien;Jones, Bernard;Vegter, Gert;Kim, Inkang;Hidding, Johan;Hellwing, Wojciech A.
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.3
    • /
    • pp.125-131
    • /
    • 2013
  • We present the relation between the genus in cosmology and the Betti numbers for excursion sets of three- and two-dimensional smooth Gaussian random fields, and numerically investigate the Betti numbers as a function of threshold level. Betti numbers are topological invariants of figures that can be used to distinguish topological spaces. In the case of the excursion sets of a three-dimensional field there are three possibly non-zero Betti numbers; ${\beta}_0$ is the number of connected regions, ${\beta}_1$ is the number of circular holes (i.e., complement of solid tori), and ${\beta}_2$ is the number of three-dimensional voids (i.e., complement of three-dimensional excursion regions). Their sum with alternating signs is the genus of the surface of excursion regions. It is found that each Betti number has a dominant contribution to the genus in a specific threshold range. ${\beta}_0$ dominates the high-threshold part of the genus curve measuring the abundance of high density regions (clusters). ${\beta}_1$ dominates the genus near the median thresholds which measures the topology of negatively curved iso-density surfaces, and ${\beta}_2$ corresponds to the low-threshold part measuring the void abundance. We average the Betti number curves (the Betti numbers as a function of the threshold level) over many realizations of Gaussian fields and find that both the amplitude and shape of the Betti number curves depend on the slope of the power spectrum n in such a way that their shape becomes broader and their amplitude drops less steeply than the genus as n decreases. This behaviour contrasts with the fact that the shape of the genus curve is fixed for all Gaussian fields regardless of the power spectrum. Even though the Gaussian Betti number curves should be calculated for each given power spectrum, we propose to use the Betti numbers for better specification of the topology of large scale structures in the universe.

Status Report of the Flight Model of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Moon, Bongkon;Park, Sung-Joon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Won-Kee;Kim, Il-Joong;Park, Youngsik;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Mingyu;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2017
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) is the near-infrared spectro-photometric instrument optimized to the Next Generation of small satellite series (NEXTSat). To achieve the major scientific objectives for the study of the cosmic star formation in local and distant universe, the spectro-photometric survey covering more than 100 square degree will be performed. The main observational targets will be nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optics was developed to cover a wide field of view ($2deg.{\times}2deg.$) as well as the wide wavelength range from 0.95 to $2.5{\mu}m$, which were revised based upon the recent test and evaluation of the NISS instrument. The mechanical structure were tested under the launching condition as well as the space environment. The signal processing from infrared sensor and the communication with the satellite were evaluated after the integration into the satellite. The flight model of the NSS was assembled and integrated into the satellite. To verify operations of the satellite in space, the space environment tests such as the vibration, shock and thermal-vacuum test were performed. The accurate calibration data were obtained in our test facilities. Here, we report the test results of the flight model of the NISS.

  • PDF

An exosolar planetary system N-body simuInfrared Spectro-Photometric Survey in Space: NISS and SPHEREx Missions

  • Jeong, Woong-Seob;Kim, Minjin;Im, Myungshin;Lee, Jeong-Eun;Pyo, Jeonghyun;Song, Yong-Seon;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Jo, Youngsoo;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Il-Joong;Park, Youngsik;Yang, Yujin;Ko, Jongwan;Lee, Hyung Mok;Shim, Hyunjin;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2018
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 have successfully developed by KASI. The capability of both imaging and spectroscopy is a unique function of the NISS. At first, it have realized the low-resolution spectroscopy (R~20) with a wide field of view of $2{\times}2deg$. in a wide near-infrared range from 0.95 to $2.5{\mu}m$. The major scientific mission is to study the cosmic star formation history in local and distant universe. It will also demonstrate the space technologies related to the infrared spectro-photometry in space. Now, the NISS is ready to launch in late 2018. After the launch, the NISS will be operated during 2 years. As an extension of the NISS, the SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is the NASA MIDEX (Medium-class Explorer) mission proposed together with KASI (PI Institute: Caltech). It will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. Compared to the NISS, the SPHEREx is designed to have much more wide FoV of $3.5{\times}11.3deg$. as well as wide spectral range from 0.75 to $5.0{\mu}m$. After passing the first selection process, the SPHEREx is under the Phase-A study. The final selection will be made in the end of 2018. Here, we report the status of the NISS and SPHEREx missions.

  • PDF

A Science Cultural Understanding of Traditional Astronomy in East Asia (동아시아 전통 천문학의 과학문화적 이해)

  • Yi, Moon Kyu
    • Journal of Science and Technology Studies
    • /
    • v.12 no.2
    • /
    • pp.159-183
    • /
    • 2012
  • In order to create a desirable science culture needed in our society, it is necessary to overcome the foreignness of science and technology and to overcome severance from tradition. In this context, this article attempts to understand the characteristics of our traditional science and to explore the possibility of forming a desirable science culture through astronomy, which is an example of traditional science. Thus, this article examined the general characteristics of astronomy that had appeared first in ancient civilization. It also focused on the fact that each civilization has its own unique cultural elements together with astronomical knowledge as a field of science in traditional astronomy. Calendar and lifa(曆法), which are considered science of time, are closely connected with people's daily lives and reveal cultural differences clearly among the subfields of astronomy. In all ancient civilizations, time was represented based on the movements of the sun and the moon, but how time should be concretely represented varied, depending on different cultures. As a result, various calendar system emerged. Throughout East Asia, including our country, the luni-solar calendar was used. The calendar in East Asia, unlike that in the West, was the one derived from the lifa, which was very complex and elaborate astronomical work. The characteristics of the luni-solar calendar can be clearly found in the seasonal customs that represent people's daily lives well; however, lots of so-called superstition are also included in the seasonal customs. For this reason, it is easy to misunderstand that our calendar system is unscientific, or to suspect that our overall traditional science lacks scientific aspects. However, proper understanding of the calendar and the lifa of East Asia can confirm that scientific aspects certainly existed in our tradition. This will be the vital link to tradition that will help overcome the foreignness of today's science and technology.

  • PDF