• Title/Summary/Keyword: Assumed Temperature Method

Search Result 307, Processing Time 0.026 seconds

아르곤4P준위 광방출 분석법(OES)을 이용한 플라즈마의 전자온도 및 준안정 밀도 측정

  • Lee, Yeong-Gwang;Lee, Min-Hyeong;Jeong, Jin-Uk
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.104-108
    • /
    • 2007
  • This paper reviews a simple model and spectroscopic method for extracting plasma electron temperature and argon metastable number density. The model is based on the availability of experimental relative emission intensities of only four argon lines that originate from 4p argon level. In this method, Maxwell-Boltzman distribution for EEDF is assumed and the calculation relies on the accuracy of the cross section. Therefore OES have to be compared with Langmuir probe to establish their practical validity.

  • PDF

Study on Urban Temperature Prediction Method Using Lagrangian Particle Dispersion Model (라그랑지안 입자모델을 활용한 도시기온 예측기법의 연구)

  • Kim, Seogcheol;Yun, Jeongim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2017
  • A high resolution model is proposed for calculating the temperature field of a large city, based upon a Lagrangian particle model. Utilizing the analogy between the heat and mass transport phenomena in turbulent flows, a Lagrangian particle model, originally developed for air pollutant dispersion problems, is adapted for simulating heat transport. In the model conceptual heat particles are released into the atmosphere from the heat sources and move along with the turbulent winds in accordance with the Markov process. The potential temperature assumed to be conserved along with heat particles serves as a tag, so the temperature fields can be deduced from the distribution of particles. The wind fields are constructed from a diagnostic meteorology model incorporating a morphological model designed for building flows. Test run shows the robustness of the modeling system.

INVESTIGATION OF SOOT OXIDATION CHARACTERISTICS IN A SIMULATED DIESEL PARTICULATE FILTER

  • Lee, H.S.;Chun, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.261-267
    • /
    • 2006
  • Understanding the mechanism of carbon oxidation is important for the successful modeling of diesel particulate filter regeneration. Carbon oxidation characteristics were investigated by temperature programmed oxidation(TPO) method as well as constant temperature oxidation(CTO) with a flow reactor including porous bed. The activation energy of carbon oxidation was increasing with temperature and had two different constant values in the early and the later stage of the oxidation process respectively in TPO experiment. Kinetic constants were derived and the reaction mechanisms were assumed from the experimental results and a simple reaction scheme was proposed, which approximately predicted the overall oxidation process in TPO as well as CTO.

A Study of the Sol-Air Temperature for the Calculation of Insulation in Cryogenic Storage Tank (저온용 저장탱크의 보온계산을 위한 Sol-Air 온도에 관한 연구)

  • Son, Byung-Jin;Maeng, Joo-Sung;Hong, Sung-Min
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.98-107
    • /
    • 1985
  • In this thesis, the Sol-Air temperature distribution for the side-wall of a cylindrical cryogenic storage tank made of nonhomogenious composite layer was studied, in order to calculate the thermal load by Newton's cooling law, when the solar radiation was applied upon the side wall. In the analysis, the atmospheric slab was assumed to be horizontal and infinitely large, and the Sol -Air temperature, which was found by the Net- Radiation method considering the longwave radiation wi th surroundings, was used for boundary condition. Energy equation and boundary conditions were normalized by the defined reference- temperature, and solved. The solutions were developed by the Fourier cosine series. Then, the Sol-Air temperature distribution for the side-wall of LNG storage tank was calculated.

  • PDF

Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method

  • Khayat, Majid;Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Baghlani, Abdolhossein
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.735-748
    • /
    • 2018
  • In this study, the semi-analytical finite strip method is adopted to examine the free vibration of cylindrical shells made up of functionally graded material. The properties of functionally graded shells are assumed to be temperature-dependent and vary continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of ceramic and metal. The material properties of the shells and stiffeners are assumed to be continuously graded in the thickness direction. Theoretical formulations based on the smeared stiffeners technique and the classical shell theory with first-order shear deformation theory which accounts for through thickness shear flexibility are employed. The finite strip method is applied to five different shell theories, namely, Donnell, Reissner, Sanders, Novozhilov, and Teng. The approximate procedure is compared favorably with three-dimensional finite elements. Finally, a detailed numerical study is carried out to bring out the effects of power-law index of the functional graded material, stiffeners, and geometry of the shells on the difference between various shell theories. Finally, the importance of choosing the shell theory in simulating the functionally graded cylindrical shells is addressed.

FEM APPROACH TO ONE DIMENSIONAL UNSTEADY STATE TEMPERATURE DISTRIBUTION IN HUMAN DERMAL PARTS WITH QUADRATIC SHAPE FUNCTIONS

  • Gurung, D. B.;Saxena, V. P.;Adhikary, P. R.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.301-313
    • /
    • 2009
  • This paper presents a Finite Element Method (FEM) application to thermal study of natural three layers of human dermal parts of varying properties. This paper carries out investigation of temperature distributions in these layers namely epidermis, dermis and under lying tissue layer. It is assumed that the outer skin is exposed to atmosphere and the loss of heat due to convection, radiation and evaporation of water have also been taken into account. The computations are carried out for one dimensional unsteady state case and the shape functions in dermal parts have been considered to be quadratic. A Finite Element scheme that uses the Crank-Nicolson method is used to solve the problem and the results computed have been exhibited graphically.

  • PDF

Thermoelastic analysis of rectangular plates with variable thickness made of FGM based on TSDT using DQ method

  • Amiri, Majid;Loghman, Abbas;Arefi, Mohammad
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.667-681
    • /
    • 2022
  • This paper presents a thermoelastic analysis of variable thickness plates made of functionally graded materials (FGM) subjected to mechanical and thermal loads. The thermal load is applied to the plate as a temperature difference between the top and bottom surfaces. Temperature distribution in the plate is obtained using the steady-state heat equation. Except for Poisson's ratio, all mechanical properties of the plate are assumed to vary linearly along the thickness direction based on the volume fractions of ceramic and metal. The plate is resting on an elastic foundation modeled based on the Winkler foundation model. The governing equations are derived based on the third-order shear deformation theory (TSDT) and are solved numerically for various boundary conditions using the differential quadrature method (DQM). The effects of various parameters on the stress distribution and deflection of the plate are investigated such as the value of thermal and mechanical loads, volume fractions of ceramic and metal, and the stiffness coefficients of the foundation.

Nonlinear free vibration of heated corrugated annular plates with a centric rigid mass

  • Wang, Yong-Gang;Li, Dan;Feng, Ze-Jun
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.491-505
    • /
    • 2010
  • A computational analysis of the nonlinear free vibration of corrugated annular plates with shallow sinusoidal corrugations under uniformly static ambient temperature is examined. The governing equations based on Hamilton's principle and nonlinear bending theory of thin shallow shell are established for a corrugated plate with a concentric rigid mass at the center and rotational springs at the outer edges. A simple harmonic function in time is assumed and the time variable is eliminated from partial differential governing equations using the Kantorovich averaging procedure. The resulting ordinary equations, which form a nonlinear two-point boundary value problem in spatial variable, are then solved numerically by shooting method, and the temperature-dependent characteristic relations of frequency vs. amplitude for nonlinear vibration of heated corrugated annular plates are obtained. Several numerical results are presented in both tabular and graphical forms, which demonstrate the accuracy of present method and illustrate the amplitude frequency dependence for the plate under such parameters as ambient temperature, plate geometry, rigid mass and elastic constrain.

Estimate of package crack reliabilities on the various parameters using taguchi's method (다꾸찌방법을 사용한 여러변수들이 패키지균열에 미치는 신뢰도 평가)

  • Kwon, Yong-Su;Park, Sang-Sun;Park, Jae-Wan;Chai, Young-Suck;Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.951-960
    • /
    • 1997
  • Package crack caused by the soldering process in the surface mounting plastic package is evaluated by applying the maximum energy release rate criterion. It could be shown that the crack propagation from the lower edge of the ie pad is easily occurred at the maximum temperature during the soldering process, where the pressure acting on the crack surface is assumed by the saturated vapor pressure at maximum temperature. The package crack formation depends on various parameters such as chip size, relative thickness, material properties, the moisture content and soldering temperature etc. The quantitative measure of the effects of the parameters could be easily obtained by using the taguchi's method which requires only a few kinds of combinations with such parameters. From the results, it could be obtained that the more significant parameters to effect the package reliability are the orders of Young's modulus, die pad size, down set, chip thickness and maximum soldering temperature.

Nonlinear boundary parameter identification of bridges based on temperature-induced strains

  • Wang, Zuo-Cai;Zha, Guo-Peng;Ren, Wei-Xin;Hu, Ke;Yang, Hao
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.563-573
    • /
    • 2018
  • Temperature-induced responses, such as strains and displacements, are related to the boundary conditions. Therefore, it is required to determine the boundary conditions to establish a reliable bridge model for temperature-induced responses analysis. Particularly, bridge bearings usually present nonlinear behavior with an increase in load, and the nonlinear boundary conditions cause significant effect on temperature-induced responses. In this paper, the bridge nonlinear boundary conditions were simulated as bilinear translational or rotational springs, and the boundary parameters of the bilinear springs were identified based on the measured temperature-induced responses. First of all, the temperature-induced responses of a simply support beam with nonlinear translational and rotational springs subjected to various temperature loads were analyzed. The simulated temperature-induced strains and displacements were assumed as measured data. To identify the nonlinear translational and rotational boundary parameters of the bridge, the objective function based on the temperature-induced responses is then created, and the nonlinear boundary parameters were further identified by using the nonlinear least squares optimization algorithm. Then, a beam structure with nonlinear translational and rotational springs was simulated as a numerical example, and the nonlinear boundary parameters were identified based on the proposed method. The numerical results show that the proposed method can effectively identify the parameters of the nonlinear boundary conditions. Finally, the boundary parameters of a real arch bridge were identified based on the measured strain data and the proposed method. Since the bearings of the real bridge do not perform nonlinear behavior, only the linear boundary parameters of the bridge model were identified. Based on the bridge model and the identified boundary conditions, the temperature-induced strains were recalculated to compare with the measured strain data. The recalculated temperature-induced strains are in a good agreement with the real measured data.