• Title/Summary/Keyword: Association process

Search Result 11,739, Processing Time 0.033 seconds

Modeling of Grade Change Operations in Paper Mills

  • Ko, Jun-Seok;Yeo, Yeong-Koo;Ha, Seong-Mun;Lim, Jung-Woo;Ko, Du-Seok;Hong Kang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.46-52
    • /
    • 2003
  • In this work we developed the closed-loop model of a paper machine during grade change with the intention to provide a reliable dynamic model to be used in the model-based grade change control scheme. During the grade change, chemical and physical characteristics of paper process change with time. It is very difficult to represent these characteristics on-line by using physical process models. In this work, the wet circulation part and the drying section were considered as a single process and closed-loop identification technique was used to develop the grade change model. Comparison of the results of numerical simulations with mill operation data demonstrates the effectiveness of the model identified.

Modeling of the Drying Process in Paper Plants

  • Hwang, Ki-Seok;Yeo, Yeong-Koo;Yi, Sung-Chul;Dongjun Seo;Hong Kang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.53-61
    • /
    • 2003
  • In this study a model for the drying process in paper production plants was developed based on the mass and heat balances around drying cycles. Relationships for the heat transfer coefficients between the web and the air as well as between the drying cylinder and the web were extracted from the closed-loop plant operation data. It was found that the heat transfer coefficients could be represented effectively in terms of moisture content, basis weight and reel velocity. The effectiveness of the proposed model was illustrated through numerical simulations. From the comparison with the operation data, the proposed model represents the paper plant being considered with sufficient accuracy.

ONP 탈묵공정의 계면활성제와 지방산 비교

  • Ryu, Jeong-Yong;Song, Bong-Geun
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2010.04a
    • /
    • pp.7-7
    • /
    • 2010
  • Flotation deinking is a common practice for removing ink from recovered paper, and it is becoming a key process in many recycling paper mills. Flotation deinking was successfully introduced to the paper recycling industry in the 1980s, and its applications in wax removal, stickies control, and fiber fractionation have attracted great research interest. A successful flotation process has three major efficient subprocesses: the detachment of the ink particles from the fibers, the effective adhesion of the ink particles onto air bubble surfaces, and the removal of froth and ink particles from flotation cells. Surfactants can affect these subprocesses either positively or negatively. To understand how a surfactant can positively and negatively affect the flotation deinking process, the basic chemistry of surfactant in solution should be discussed.

  • PDF

How to Efficiently Implement Modernization Projects of process Control Systems (플랜트 계측제어 시스템의 개선과 프로젝트의 효율적인 수행)

  • 최기원
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.4
    • /
    • pp.44-47
    • /
    • 2000
  • Recently number of reinstrumentation projects in the process plants has grown to meet the needs to modernize or upgrade the exsisting control systems in a bid to boost productivity and quality. Design, installation and start-up of these process automation systems can be successful and trouble-free only if decision points are addressed properly. The critical decision points are encountered from tile design through the start-up phases of implementing a modernization project and discussed extensively here on a practical basis. Key points are ;to assign a project manager out of the plant instrument engineers for him to organize and lead a project team. ;to follow three critical steps in designing and implementing. :to think ahead of the critical steps and to induce a positive cooperation from all level of participants in the effort to prevent possible schedule delays.

  • PDF

The Comparative analysis of MaRMI(Magic and Robust Methodology Integrated) & RUP(Rational Unified Process) (MaRMI(Magic and Robust Methodology Integrated)와 RUP(Rational Unified Process) 개발방법론 비교 분석)

  • Kim, jae-yeol;Song, mi-young
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.607-610
    • /
    • 2007
  • 시스템 개발방법론은 소프트웨어 생성을 위한 개발 단계를 정의하고, 활동, 산출물, 검증 절차, 각 단계의 완결 조건을 명시하는 체계적인 방법으로 정의할 수 있다. 정보시스템의 대형화, 복잡화, 분산화 추세에 따라서 표준화된 개발방법론에 대한 관심이 국내에서도 급속히 증가하고 있다. 정보기술의 발전에 따른 신기술의 계속적인 수용과 사용자 요구사항의 변화의 수용, 시스템 개발의 생산성과 품질의 보증을 위해서는 개발방법론과 개발도구의 활용이 필수적이다. 최근 많은 관심을 보이고 있는 마르미(Magic and Robust Methodology Integrated)와 RUP(Rational Unified Process)을 비교 분석하고자 한다.

  • PDF

Optimization of Wet Pulp Mold Process and Reduction of Drying Energy (습식 펄프몰드 생산공정의 공정개선 및 건조에너지 절감 방안)

  • Sung Yong Joo;Ryu Jeong-Yong;Kim Hyung Jin;Kim Tae Keun;Song Bong Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.83-90
    • /
    • 2004
  • Pulp mold is one of the famous environmental friendly materials, which made from re cycled materials such as old newsprints through the environmental friendly processes. Furthermore, the used pulp mold can be easily recycled and the pulp mold itself is biodegradable. However, the higher cost and some deficiency in physical properties of pulp mold have been considered as issues to be overcome for a substitute for polymeric packaging materials such as EPS (Expandable Polystyrene). The way for the optimization of a pulp mold mill was proposed in this report. The possible reduction of drying energy was calculated by using a computer simulation method, which could Provide the detailed information about mass balance of overall process. The simulated results showed a great possible curtailment of production cost by improving the forming systems, for example, increasing the temperature and the dryness of a wet pulp mold.

Characteristics of Commercial Celluloytic Enzymes (상업용 목질섬유소 분해 효소의 특성)

  • Kim, Young-Yuk;Kim, Chul-Hyun;Park, Soung-Bae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2004
  • It is very difficult to compare directly the research results of enzymatic process in pulp and paper industry because commercial enzymes have diversity in its property. The chemical and biological properties of commercial enzymes were Investigated to help comparison of various commercial enzymes each other. In most case, the solid content of liquid enzymes was about 20%. The higher protein content in enzyme product does not mean the higher enzyme activity. Enzymes for paper process should selected by basis of enzyme activity, not by price of enzyme products. The chemical composition of fiber was not so much change with enzyme treatment. The enzymatic hydrolysis of fiber might negligible in paper process.

Application of Dynamic Simulation for Efficient Filler-Loading in Papermaking System (제지 공정의 효율적인 충전제 투입에 대한 동적 시뮬레이션 적용)

  • 함충현;윤혜정
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.1-12
    • /
    • 2003
  • The complexity of the papermaking system accelerates interactions between a large number of variables involved. The process operation, therefore, is subject to frequent perturbations by disturbance. Dynamic modelling is a useful tool for characterizing the transient behavior and selecting the best control strategies to reject disturbances. In this study we developed a dynamic simulation model of a fine paper production process, which consists of stock preparation, wire sections, white water circulations, and broke system. It focused on dynamic simulation in its role for developing control strategies and studying control loop dynamics related to filler loading for ash control. The results emphasized the importance of filler-loading position and length of control loop for rapid ash control and process stabilization.

Preliminary Study on Automation of Bark Peeling Process for Paper Mulberry (닥나무 흑피제거 자동화 공정 기초연구)

  • Kwon, Oh-Hun;Kim, Hyun-Chel
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.59-66
    • /
    • 2011
  • This study was carried out to develop the automation bark peeling process of paper mulberry for making Hanji. Nowadays, almost raw material has been imported from south-east asia for making Hanji. Raw material dependence is very high for Hanji-making by low productivity in korea. This study is focused on the resolution for problem of bark peeling automation. Water and sand jet of compressed air was possible bark peeling for black bast fiber. The effect of removing black bast fiber increased the longer the steaming time. Also using drum of bark peeling showed that results under temperature $80^{\circ}C$ and Rpm 50/min were best bark peeling and separating bast fiber from stem. The contents of holocellulose, lignin, ethanol-benzene extractives, and ash were 91.63~95.55%, 1.4~2.0%, 1.12~1.65%, and 1.4~4.3%, respectively. Chemical characteristics are similar between imported raw-material with drum bark.

Deposition of Epitaxial Silicon by Hot-Wall Chemical Vapor Deposition (CVD) Technique and its Thermodynamic Analysis

  • Koh, Wookhyun;Yoon, Deoksun;Pa, ChinHo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.173-176
    • /
    • 1998
  • Epitaxial Si layers were deposited on n- or p-type Si(100) substrates by hot-wall chemical vapor deposition (CVD) technique using the {{{{ {SiH }_{ 2} {Cl }_{2 } - {H }_{ 2} }}}}chemistry. Thermodynamic calculations if the Si-H-Cl system were carried out to predict the window of actual Si deposition procedd and to investigate the effects of process variables(i.e., the deposition temperature, the reactor pressure, and the source gas molar ratios) on the growth of epitaxial layers. The calculated optimum process conditions were applied to the actual growth runs, and the results were in good agreement with the calculation. The expermentally determined optimum process conditions were found to be the deposition temperature between 900 and 9$25^{\circ}C$, the reactor pressure between 2 and 5 Torr, and source gad molar ration({{{{ {H }_{2 }/ {SiH }_{ 2} {Cl }_{2 } }}}}) between 30 and 70, achieving high-quality epitaxial layers.

  • PDF