• Title/Summary/Keyword: Association Rules Mining

Search Result 308, Processing Time 0.031 seconds

Association Rules Mining of Image Data using Spatial Factor (공간 분할 지수를 이용한 이미지 데이터 연관 규칙 마이닝)

  • Song ImYoung;Kim K.C.;Suk S.K.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.82-84
    • /
    • 2005
  • 본 논문에서는 기존의 멀티미디어 연관 규칙 알고리즘인 Max occur 알고리즘에서 추출한 빈발 항목 집합의 결과들에 대하여 빈발 항목 집합들끼리의 공간적인 연관 관계를 고려하기 위챈 공간 데이터 마이닝의 대표적인 공간 분할 방법인 그리드 셀 기반으로 곰간 분할 지수(spatial facotr)인 SF를 이용한 이미지 공간 연관 규칙 마이닝 방법을 제시한다. 또한 최소 공간 지지도를 적용하여 이미지 데이터에서 반복적으로 발생하는 항목과 항목간의 공간 관계를 통해 이미지 연관 규칙을 마이닝 하는데 보다 유효한 알고리즘을 제안한다.

  • PDF

A Bottom-Up Approach for Mining Multiple-Level Association Rules Using Fuzzy Concert Hierarchies (퍼지 개념 계층을 이용한 다중 수준 연관 규칙 마이닝의 상향식 접근)

  • Sohn, Bong-Ki;Han, Sang-Hun;Lee, Keon-Myung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10b
    • /
    • pp.1445-1448
    • /
    • 2000
  • 이 논문에서는 개념간의 애매한 관계를 적절히 표현할 수 있는 퍼지 개념 계층을 참조하여 최하위 개념 수준에서부터 최상위 개념 수준까지 각 수준에서 연관 규칙을 추출하는 다중 수준 상향식 연관규칙 마이닝 방법을 제안한다. 상위 개념 수준에서 빈발 항목 집합을 구하는데 필요한 상위 개념 수준의 트랜잭션 데이터베이스를 생성하는 방법을 소개한다. 또한 제안한 방법의 응용성을 보이기 위해 실험 과정과 결과를 보인다.

  • PDF

Subtree Mining to extract Association rules from Tree Data (트리 데이터에서 연관규칙 추출을 위한 서브트리 마이닝)

  • Kang, Woo-Jun;Shin, Jun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.317-320
    • /
    • 2006
  • XML 트리 데이터들로부터 빈번 서브 트리들을 추출하는 기존 방법들은 복잡하고 다수의 입력데이터 스캐닝을 필요로 할 뿐만 아니라 빈번 서브 트리를 구하기 위해 에지 하나하나의 조인 작업을 필요로 하였다. 이는 결과적으로 많은 수행 시간을 요한다. 본 논문에서는 트리데이터를 레벨 별로 나누고 이를 마치 채로 거르듯이 필터링하여 특정 수치 이상의 출현 횟수를 가지는 노드들만을 남겨 빠르게 빈번한 서브 트리를 찾고, 이를 이용하여 XML 연관규칙들을 생성하는 방법을 제시한다. 제시된 방법을 위해서 PairSet 이라는 새로운 자료구조를 도입하였으며, 이를 이용하는 크로스필터링 알고리즘을 개발하여 제시하였다.

  • PDF

An Implementation and Performance Characteristics of the FP-tree Association Rules Mining Algorithm (FP-tree 연관 규칙 탐사 알고리즘의 구현 및 성능 특성)

  • Lee, Hyung-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.337-340
    • /
    • 2006
  • FP-tree(Frequent Pattern Tree) 연관 규칙 탐사 알고리즘은 DB 스캔에 대한 부담을 획기적으로 절감시킴으로써 전체적인 성능을 향상시키고자 제안되었다. 그런데, FP-tree는 DB에 저장된 거래 내용중 빈발 항목을 포함하는 모든 거래를 트리에 저장해야 하기 때문에 그만큼 많은 메모리를 필요로 한다. 이 논문에서는 범용 운영체제인 유닉스 시스템을 사용해서 메모리 사용 측면에서 F.P. Tree 알고리즘의 타당성과 이에 따른 성능 특성을 관찰하였다. 그 결과, F.P. Tree 알고리즘은 현대 컴퓨터에서 보편화된 512MB${\sim}$1GB의 주메모리 시스템에서 무리는 없으나, 메모리 소요량이 DB의 크기나 빈발 항목 집합의 수 보다는 거래의 길이 등 DB의 특성에 따라 급격하게 증가하는 것으로 나타났다.

  • PDF

Association Rules Mining on Image Data with Recurrent Items and Significant Rare Items (빈발 항목과 의미있는 희소 항목을 포함한 이미지 데이터 연관 규칙 마이닝)

  • Song, Im-Young;Suk, Sang-Kee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11c
    • /
    • pp.1359-1362
    • /
    • 2003
  • 최근 인터넷과 웹 기술의 발전 그리고 이를 기반으로 하는 다양한 멀티미디어 컨텐츠가 홍수를 이루고 있지만 멀티미디어 데이터에서 체계적으로 연관 규칙을 마이닝 하는 연구는 초기 단계이다. 본 논문에서는 이미지 프로세싱 분야 및 내용 기반 이미지 검색에 대한 기존 연구를 바탕으로 이미지 데이터 저장소에 저장된 재생성 항목과 희소하게 발생하지만 상대적으로 특정 항목과 높은 비율로 동시에 나타나는 희소 항목을 포함한 내용기반의 이미지 연관 규칙을 찾아내기 위한 탐사 기법을 제안한다 실험 결과 제안된 알고리즘은 기존의 재생성 항목만을 고려한 알고리즘보다 희소 항목을 포함하여 연관 규칙을 탐사하므로 같은 종류의 이미지가 모여 있는 저장소에서 이미지 오브젝트간의 연관 관계를 발견하는 이미지 데이터 마이닝에 효과적이다.

  • PDF

An Efficient Algorithm Using the locality of Data for Mining Quantitative Association Rules (수량 연관규칙 생성을 위한 데이터의 지역성을 고려한 효과적인 알고리즘 제안)

  • 이혜정;박원환;박두순
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.126-129
    • /
    • 2003
  • 최근 대용량의 데이터베이스로부터 연관규칙을 발견하여 이를 활용하는 단계에서 이러한 연관규칙을 수량항목에도 적용할 수 있도록 확장하는 연구가 소개되고 있다. 본 논문에서는 수량 항목을 이진항목으로 변환하기 위하여 빈발구간 항목집합(Large Interval Itemsets)을 생성할 때 수량 항목이 특정 영역에 집중하여 발생하거나 골고루 분포되어 있지 않은 경우, 이러한 지역성(locality)을 고려하여 빈발구간 항목집합을 생성하는 방법을 제안한다. 이 방법은 기존의 방법보다 많은 수의 세밀한 빈발구간 항목들을 생성할 수 있을 뿐만 아니라 의미 있는 구간을 중심으로 빈발구간 항목들이 순서대로 생성되기 때문에 세밀도를 판단하여 활용할 수 있으며, 원 데이터가 가지고 있는 특성의 손실을 최소화할 수 있는 특징이 있다 또한 인구센서스등 실 데이터를 사용한 성능평가를 통하여 기존의 방법보다 우수함을 보였다.

  • PDF

Opinion Mining of Product Reviews using Association Rules (연관 규칙을 사용한 상품평 오피니언 마이닝)

  • Kim, Won-Young;Ryu, Joon-Suk;Kim, Ung-Mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.747-748
    • /
    • 2009
  • 사용자가 웹 상에 작성한 상품평은 다양한 정보를 포함하고 있는 데이터이다. 대부분의 사람들이 상품을 구입하기 전에 상품평을 통해서 상품에 대한 많은 정보를 얻는다. 이에 따라 대량의 상품평 데이터로부터 유용한 정보를 추출하여 요약하는 오피니언 마이닝에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 사용자가 많은 상품평들을 모두 읽어보지 않고 상품에 대한 오피니언과 장점과 단점을 쉽게 알 수 있도록 연관 규칙 마이닝을 적용하는 오피니언 마이닝 방법을 제안한다.

Pattern Analysis of Comorbidity and Multimorbidity in Reference to the 7th KNHANES (국민건강영양조사를 이용한 동반질환 및 다중이환의 패턴분석)

  • Lee, Hyun-Ju;Myoung, Sungmin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.699-700
    • /
    • 2021
  • This study investigated patterns of co-occuring chronic diseases and disorders in old ages. For this purpose, we utilized data from the Korean National Health and Nutrition Examination Survey for 3,734 old adults aged over 65. Data on 18 conditions were obtained, and analyzed using network analysis, associated rule mining, cluster analysis. The majority of participants has multimorbidity. Association rules analysis reveals unexpected comorbidities with high lift and confidence. Also, some morbidity clusters were present. Diabetes and emotional disorder had the greatest comorbidity and represent complex comorbid conditions. Old age is characterized by a complex pattern of multimorbidity and comorbidity. In conclusion, particular combinations of morbidities were very prevalent and will be needed to policy of health care interventions for old ages.

  • PDF

An Efficient Algorithm for Mining Association Rules using a Binary Representation (이진 표현을 이용한 효율적인 연관 규칙 탐사 알고리즘)

  • Won-Young Kim;Won-Gil Choi;Ung-Mo Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.375-378
    • /
    • 2008
  • 오늘날 지식을 기반으로 하는 고도의 정보사회로 나아가는 시점에서 우리는 대량의 데이터 속에서 필요한 지식을 찾아내는 것에 초점을 모으게 되었다. 따라서 대량의 데이터 속에서 필요한 지식을 자동으로 찾아내는 데이터 마이닝에 대한 연구가 활발히 진행되고 있다. 데이터 마이닝은 대용량의 데이터를 대상으로 하기 때문에 정확도뿐만이 아니라 소요시간도 중요하기 때문에 성능 향상을 위한 알고리즘들이 많이 개발되었다. 데이터 마이닝의 성능을 향상시키기 위해서 가장 좋은 방법이 데이터베이스의 스캔의 횟수를 줄이는 것이다. 본 논문에서는 연관 규칙 탐사에서 빈발 항목 집합을 찾아내는 부분을 이진 표현을 이용하여 좀 더 성능을 향상시킬 수 있는 알고리즘을 제안한다.

A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining (연관상품 추천을 위한 회귀분석모형 기반 연관 규칙 척도 결합기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.127-141
    • /
    • 2017
  • Advances in Internet technologies and the proliferation of mobile devices enabled consumers to approach a wide range of goods and services, while causing an adverse effect that they have hard time reaching their congenial items even if they devote much time to searching for them. Accordingly, businesses are using the recommender systems to provide tools for consumers to find the desired items more easily. Association Rule Mining (ARM) technology is advantageous to recommender systems in that ARM provides intuitive form of a rule with interestingness measures (support, confidence, and lift) describing the relationship between items. Given an item, its relevant items can be distinguished with the help of the measures that show the strength of relationship between items. Based on the strength, the most pertinent items can be chosen among other items and exposed to a given item's web page. However, the diversity of the measures may confuse which items are more recommendable. Given two rules, for example, one rule's support and confidence may not be concurrently superior to the other rule's. Such discrepancy of the measures in distinguishing one rule's superiority from other rules may cause difficulty in selecting proper items for recommendation. In addition, in an online environment where a web page or mobile screen can provide a limited number of recommendations that attract consumer interest, the prudent selection of items to be included in the list of recommendations is very important. The exposure of items of little interest may lead consumers to ignore the recommendations. Then, such consumers will possibly not pay attention to other forms of marketing activities. Therefore, the measures should be aligned with the probability of consumer's acceptance of recommendations. For this reason, this study proposes a model-based approach to combine those measures into one unified measure that can consistently determine the ranking of recommended items. A regression model was designed to describe how well the measures (independent variables; i.e., support, confidence, and lift) explain consumer's acceptance of recommendations (dependent variables, hit rate of recommended items). The model is intuitive to understand and easy to use in that the equation consists of the commonly used measures for ARM and can be used in the estimation of hit rates. The experiment using transaction data from one of the Korea's largest online shopping malls was conducted to show that the proposed model can improve the hit rates of recommendations. From the top of the list to 13th place, recommended items in the higher rakings from the proposed model show the higher hit rates than those from the competitive model's. The result shows that the proposed model's performance is superior to the competitive model's in online recommendation environment. In a web page, consumers are provided around ten recommendations with which the proposed model outperforms. Moreover, a mobile device cannot expose many items simultaneously due to its limited screen size. Therefore, the result shows that the newly devised recommendation technique is suitable for the mobile recommender systems. While this study has been conducted to cover the cross-selling in online shopping malls that handle merchandise, the proposed method can be expected to be applied in various situations under which association rules apply. For example, this model can be applied to medical diagnostic systems that predict candidate diseases from a patient's symptoms. To increase the efficiency of the model, additional variables will need to be considered for the elaboration of the model in future studies. For example, price can be a good candidate for an explanatory variable because it has a major impact on consumer purchase decisions. If the prices of recommended items are much higher than the items in which a consumer is interested, the consumer may hesitate to accept the recommendations.