• Title/Summary/Keyword: Association Rules Algorithm

Search Result 141, Processing Time 0.028 seconds

Assoication Rule Analysis between lifestyle risk behaviors and multimorbidity: Findings from KHANES (국민건강영양조사 자료를 활용한 라이프스타일 위험요인과 다중이환간의 연관관계분석)

  • Hyun-Ju Lee;Sungmin Myoung
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.25 no.1
    • /
    • pp.29-41
    • /
    • 2024
  • Objectives: This study used an efficient data mining algorithm to explore association rules between the lifestyle risk behaviors and multimorbidity (having more than one chronic disease) in Korean adults. Methods: We used data from the 8th Korean National Health and Nutrition Examination Survey(2019-2020) for 7,609 adults aged ≥19 years. This study was undertaken where 6 lifestyle risk behaviors and 11 morbidities were analyzed using R and Rstudio for the ARM. Results: Among 117 association rules, combinations of hypertension, dyslipidemia and diabetes, hypertension were important role in inadequate sleep, physical inactivity and inadequate weight. Conclusion: The findings of this study are significant because they demonstrate the importance of lifestyle risk factors and the role of multiple chronic diseases using big data analytics such as association rule mining. We recommend developing selective and focused health education programs, such as exercise programs to address physical inactivity, dietary interventions to address inadequate weight, and mental health education programs to address inadequate sleep.

Development of Automatic Rule Extraction Method in Data Mining : An Approach based on Hierarchical Clustering Algorithm and Rough Set Theory (데이터마이닝의 자동 데이터 규칙 추출 방법론 개발 : 계층적 클러스터링 알고리듬과 러프 셋 이론을 중심으로)

  • Oh, Seung-Joon;Park, Chan-Woong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.135-142
    • /
    • 2009
  • Data mining is an emerging area of computational intelligence that offers new theories, techniques, and tools for analysis of large data sets. The major techniques used in data mining are mining association rules, classification and clustering. Since these techniques are used individually, it is necessary to develop the methodology for rule extraction using a process of integrating these techniques. Rule extraction techniques assist humans in analyzing of large data sets and to turn the meaningful information contained in the data sets into successful decision making. This paper proposes an autonomous method of rule extraction using clustering and rough set theory. The experiments are carried out on data sets of UCI KDD archive and present decision rules from the proposed method. These rules can be successfully used for making decisions.

Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform (빅데이터 플랫폼을 위한 SON알고리즘 기반의 효과적인 연관 룰 마이닝)

  • Nguyen, Giang-Truong;Nguyen, Van-Quyet;Nguyen, Sinh-Ngoc;Kim, Kyungbaek
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1593-1601
    • /
    • 2017
  • In a big data platform, association rule mining applications could bring some benefits. For instance, in a agricultural big data platform, the association rule mining application could recommend specific products for farmers to grow, which could increase income. The key process of the association rule mining is the frequent itemsets mining, which finds sets of products accompanying together frequently. Former researches about this issue, e.g. Apriori, are not satisfying enough because huge possible sets can cause memory to be overloaded. In order to deal with it, SON algorithm has been proposed, which divides the considered set into many smaller ones and handles them sequently. But in a single machine, SON algorithm cause heavy time consuming. In this paper, we present a method to find association rules in our Hadoop based big data platform, by parallelling SON algorithm. The entire process of association rule mining including pre-processing, SON algorithm based frequent itemset mining, and association rule finding is implemented on Hadoop based big data platform. Through the experiment with real dataset, it is conformed that the proposed method outperforms a brute force method.

An Algorithm for Adaptive School Web Site Construction Using Association Rules (연관규칙을 이용한 적응형 학교 웹사이트 구축 알고리즘)

  • Lee, Jeong-Min;Jun, Woo-Chun
    • 한국정보교육학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.721-729
    • /
    • 2004
  • 최근에 학교 현장에서 제공하는 홈페이지는 학교의 정보화 능력을 가늠하는 척도가 되고 있으며 학생과 학부모 그리고 학교가 상호 의사소통 할 수 있는 좋은 장을 마련해주고 있다. 그러나 끊임없이 변화하는 학생들의 검색 패턴에 대해서 학교 홈페이지가 적절히 대처하지 못하고 있으며, 그들의 방문 목적 달성을 위한 충분한 안내를 제공함에 있어 한계를 가지고 있는 것이 사실이다. 본 논문에서는 사이트 접속자들의 행동 패턴 분석을 위해 웹서버 로그 데이터를 이용하고, 데이터 마이닝의 한 기법인 연관규칙을 적용하여 로그 데이터를 분석함으로써 사용자들의 의미 있는 행동패턴을 추출하는 알고리즘을 제안하였다. 이렇게 추출된 행동패턴을 기반으로 하이퍼링크가 자동으로 생성되어 해당 웹페이지에 삽입됨으로써 특정 개인뿐만 아니라 공통의 다수가 편리하게 이용할 수 있는 적응형 학교 웹사이트 구축 방안을 제시한다.

  • PDF

Scenario-based 3D Objects Reuse Algorithm Scheme (시나리오 기반의 3D 객체 재사용 알고리즘)

  • Kang, Mi-Young;Lee, Hyung-Ok;Son, Seung-Chul;Heo, Kwon;Kim, Bong-Tae;Nam, Ji-Seung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.11
    • /
    • pp.302-309
    • /
    • 2006
  • This paper propose a practical algorithm to reuse and expand the objects. This algorithm is based on the Motion Path Modification rules. We focus on reusing of the existing motions for synthesizing new motions for the objects. Both the linear and the nonlinear curve-fitting algorithm are applied to modify an animation by keyframe interpolation and to make the motion appear realistic. We also proposes a framework of the scenario-based 3D image synthesizing system that allows common users, who envision a scenario in their minds, to realize it into segments of a cool animation. The framework is useful in building a 3D animation in game programming with a limited set of 3D objects.

  • PDF

Event-Triggered NMPC-Based Ship Collision Avoidance Algorithm Considering COLREGs (국제해상충돌예방규칙을 고려한 Event Triggered NMPC 기반의 선박 충돌 회피 알고리즘)

  • Yeongu Bae;Jaeha Choi;Jeonghong Park;Miniu Kang;Hyejin Kim;Wonkeun Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.155-164
    • /
    • 2023
  • About 75% of vessel collision accidents are caused by human error, which causes enormous economic loss, environmental pollution, and human casualties, thus research on automatic collision avoidance of vessels is being actively conducted. In addition, vessels must comply with the COLREGs rules stipulated by IMO when performing collision avoidance with other vessels in motion. In this study, the collision risk was calculated by estimating the position and velocity of other vessels through the Probabilistic Data Association Filter (PDAF) algorithm based on RADAR sensor data. When a collision risk is detected, we propose an event-triggered Nonlinear Model Predict Control (NMPC) algorithm that geometrically creates waypoints that satisfy COLREGs and follows them. To verify the proposed algorithm, simulations through MATLAB are performed.

Adaptive Frequent Pattern Algorithm using CAWFP-Tree based on RHadoop Platform (RHadoop 플랫폼기반 CAWFP-Tree를 이용한 적응 빈발 패턴 알고리즘)

  • Park, In-Kyu
    • Journal of Digital Convergence
    • /
    • v.15 no.6
    • /
    • pp.229-236
    • /
    • 2017
  • An efficient frequent pattern algorithm is essential for mining association rules as well as many other mining tasks for convergence with its application spread over a very broad spectrum. Models for mining pattern have been proposed using a FP-tree for storing compressed information about frequent patterns. In this paper, we propose a centroid frequent pattern growth algorithm which we called "CAWFP-Growth" that enhances he FP-Growth algorithm by making the center of weights and frequencies for the itemsets. Because the conventional constraint of maximum weighted support is not necessary to maintain the downward closure property, it is more likely to reduce the search time and the information loss of the frequent patterns. The experimental results show that the proposed algorithm achieves better performance than other algorithms without scarifying the accuracy and increasing the processing time via the centroid of the items. The MapReduce framework model is provided to handle large amounts of data via a pseudo-distributed computing environment. In addition, the modeling of the proposed algorithm is required in the fully distributed mode.

An Optimization of Hashing Mechanism for the DHP Association Rules Mining Algorithm (DHP 연관 규칙 탐사 알고리즘을 위한 해싱 메커니즘 최적화)

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.13-21
    • /
    • 2010
  • One of the most distinguished features of the DHP association rules mining algorithm is that it counts the support of hash key combinations composed of k items at phase k-1, and uses the counted support for pruning candidate large itemsets to improve performance. At this time, it is desirable for each hash key combination to have a separate count variable, where it is impossible to allocate the variables owing to memory shortage. So, the algorithm uses a direct hashing mechanism in which several hash key combinations conflict and are counted in a same hash bucket. But the direct hashing mechanism is not efficient because the distribution of hash key combinations is unvalanced by the characteristics sourced from the mining process. This paper proposes a mapped perfect hashing function which maps the region of hash key combinations into a continuous integer space for phase 3 and maximizes the efficiency of direct hashing mechanism. The results of a performance test experimented on 42 test data sets shows that the average performance improvement of the proposed hashing mechanism is 7.3% compared to the existing method, and the highest performance improvement is 16.9%. Also, it shows that the proposed method is more efficient in case the length of transactions or large itemsets are long or the number of total items is large.

Characteristics of Input-Output Spaces of Fuzzy Inference Systems by Means of Membership Functions and Performance Analyses (소속 함수에 의한 퍼지 추론 시스템의 입출력 공간 특성 및 성능 분석)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.74-82
    • /
    • 2011
  • To do fuzzy modelling of a nonlinear process needs to analyze the characteristics of input-output of fuzzy inference systems according to the division of entire input spaces and the fuzzy reasoning methods. For this, fuzzy model is expressed by identifying the structure and parameters of the system by means of input variables, fuzzy partition of input spaces, and consequence polynomial functions. In the premise part of the fuzzy rules Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the clusters are used for identification of fuzzy model and membership functions are used as a series of triangular, gaussian-like, trapezoid-type membership functions. In the consequence part of the fuzzy rules fuzzy reasoning is conducted by two types of inferences such as simplified and linear inference. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. And lastly, using gas furnace process which is widely used in nonlinear process we evaluate the performance and the system characteristics.

Semi-Automatic Ontology Generation about XML Documents using Data Mining Method (데이터 마이닝 기법을 이용한 XML 문서의 온톨로지 반자동 생성)

  • Gu Mi-Sug;Hwang Jeong-Hee;Ryu Keun-Ho;Hong Jang-Eui
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.299-308
    • /
    • 2006
  • As recently XML is becoming the standard of exchanging web documents and public documentations, XML data are increasing in many areas. To retrieve the information about XML documents efficiently, the semantic web based on the ontology is appearing. The existing ontology has been constructed manually and it was time and cost consuming. Therefore in this paper, we propose the semi-automatic ontology generation technique using the data mining technique, the association rules. The proposed method solves what type and how many conceptual relationships and determines the ontology domain level for the automatic ontology generation, using the data mining algorithm. Appying the association rules to the XML documents, we intend to find out the conceptual relationships to construct the ontology, finding the frequent patterns of XML tags in the XML documents. Using the conceptual ontology domain level extracted from the data mining, we implemented the semantic web based on the ontology by XML Topic Maps (XTM) and the topic map engine, TM4J.