• 제목/요약/키워드: Assessment and benchmark

검색결과 101건 처리시간 0.026초

Uncertainty and sensitivity analysis in reactivity-initiated accident fuel modeling: synthesis of organisation for economic co-operation and development (OECD)/nuclear energy agency (NEA) benchmark on reactivity-initiated accident codes phase-II

  • Marchand, Olivier;Zhang, Jinzhao;Cherubini, Marco
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.280-291
    • /
    • 2018
  • In the framework of OECD/NEA Working Group on Fuel Safety, a RIA fuel-rod-code Benchmark Phase I was organized in 2010-2013. It consisted of four experiments on highly irradiated fuel rodlets tested under different experimental conditions. This benchmark revealed the need to better understand the basic models incorporated in each code for realistic simulation of the complicated integral RIA tests with high burnup fuel rods. A second phase of the benchmark (Phase II) was thus launched early in 2014, which has been organized in two complementary activities: (1) comparison of the results of different simulations on simplified cases in order to provide additional bases for understanding the differences in modelling of the concerned phenomena; (2) assessment of the uncertainty of the results. The present paper provides a summary and conclusions of the second activity of the Benchmark Phase II, which is based on the input uncertainty propagation methodology. The main conclusion is that uncertainties cannot fully explain the difference between the code predictions. Finally, based on the RIA benchmark Phase-I and Phase-II conclusions, some recommendations are made.

Risk Assessment for Noncarcinogenic Chemical Effects

  • Kodell Ralph L.
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 1994년도 교수 연수회(환경)
    • /
    • pp.412-415
    • /
    • 1994
  • The fundamental assumption that thresholds exist for noncarcinogenic toxic effects of chemicals is reviewed; this assumption forms the basis for the no-observed-effect level/ safety-factor (NOEL/SF) approach to risk assessment for such effects. The origin and evolution of the NOEL/SF approach are traced, and its limitations are discussed. The recently proposed use of dose-response modeling to estimate a benchmark dose as a replacement for the NOEL is explained. The possibility of expanding dose-response modeling of non carcinogenic effects to include the estimation of assumed thresholds is discussed. A new method for conversion of quantitative toxic responses to a probability scale for risk assessment via dose-response modeling is outlined.

  • PDF

Experimental assessment of the piezoelectric transverse d15 shear sensing mechanism

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.567-585
    • /
    • 2014
  • The piezoelectric transverse $d_{15}$ shear sensing mechanism is firstly assessed experimentally for a cantilever smart sandwich plate made of a piezoceramic axially poled patched core and glass fiber reinforced polymer composite faces. Different electrical connections are tested for the assessment of the sensor performance under a varying amplitude harmonic (at 24 Hz) force. Also, the dynamic response of the smart sandwich composite structure is monitored using different acquisition devices. The obtained experimentally sensed voltages are compared to those resulting from the benchmark three-dimensional piezoelectric coupled finite element simulations using a commercial code where realistic features, like equipotential conditions on the patches' electrodes and mechanical updating of the clamp, are considered. Numerically, it is found that the stiffness of the clamp, which is much softer than the ideal one, has an enormous influence on the sensed voltage of its adjacent patch; therefore, sensing with the patch on the free side would be more advantageous for a cantilever configuration. Apart from confirming the latter result, the plate benchmark experimental assessment showed that the parallel connection of its two oppositely poled patches has a moderate performance but better than the clamp side patch acting as an individual sensor.

Estimating Benchmark Dose and Permissible Intake Level Using Subchronic Toxicity Data of Aristolochia Contorta

  • Lee, Hyomin;Eunkyung Yoon;Myungsil Hwang;Lee, Geunyung;Jisun Yang;Kihwa Yang;Kwangsup Kil
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.198-198
    • /
    • 2002
  • Occurrence of Chinese Herbs Nephropathy (CHN) has been reported in young women who had taken a slimming pills containing some chinese herbs. Aristolochic acid (AA) known as a carcinogen, was suspected as the major causal factor of CHN. AA is major component of fruit of A. contorta was used in Korean Traditional Medicine.(omitted)

  • PDF

Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • Luzzi, L.;Barani, T.;Boer, B.;Cognini, L.;Nevo, A. Del;Lainet, M.;Lemehov, S.;Magni, A.;Marelle, V.;Michel, B.;Pizzocri, D.;Schubert, A.;Uffelen, P. Van;Bertolus, M.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3367-3378
    • /
    • 2021
  • The design phase and safety assessment of Generation IV liquid metal-cooled fast reactors calls for the improvement of fuel pin performance codes, in particular the enhancement of their predictive capabilities towards uranium-plutonium mixed oxide fuels and stainless-steel cladding under irradiation in fast reactor environments. To this end, the current capabilities of fuel performance codes must be critically assessed against experimental data from available irradiation experiments. This work is devoted to the assessment of three European fuel performance codes, namely GERMINAL, MACROS and TRANSURANUS, against the irradiation of two fuel pins selected from the SUPERFACT-1 experimental campaign. The pins are characterized by a low enrichment (~ 2 wt.%) of minor actinides (neptunium and americium) in the fuel, and by plutonium content and cladding material in line with design choices envisaged for liquid metal-cooled Generation IV reactor fuels. The predictions of the codes are compared to several experimental measurements, allowing the identification of the current code capabilities in predicting fuel restructuring, cladding deformation, redistribution of actinides and volatile fission products. The integral assessment against experimental data is complemented by a code-to-code benchmark focused on the evolution of quantities of engineering interest over time. The benchmark analysis points out the differences in the code predictions of fuel central temperature, fuel-cladding gap width, cladding outer radius, pin internal pressure and fission gas release and suggests potential modelling development paths towards an improved description of the fuel pin behaviour in fast reactor irradiation conditions.

선박해양구조물의 최종강도 해석용 프로그램 ALPS 적용사례 (ALPS Ultimate limit state assessment of ships and offshore structure)

  • 서정관;백점기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.28-35
    • /
    • 2005
  • It is now well recognized that the ultimate limit state approach is a much better basis for design and strength assessment of ships and offshore structures since it is difficult to determine the realistic margin of safety using the traditional allowable working stress approach on the basis of linear elastic method solutions together with buckling strengthchecks adjusted by a simple plasticity correction. This paper outlines ALPS theory for ultimate limit state assessment of ship structures. ALPS is a computer software which stands for nonlinear Analysis of Large Plated Structures. Application examples of ALPS program to ultimate limit state assessment of plates, stiffened panels and ship hull girders are presented. A benchmark study is made by a comparison with the ALPS solutions with other methods including class rule formulae, nonlinear finite element methods and experimental results. Future trends on ultimate limit state assessment of ship structures are addresse[1]

  • PDF

Vibration-based structural health monitoring using CAE-aided unsupervised deep learning

  • Minte, Zhang;Tong, Guo;Ruizhao, Zhu;Yueran, Zong;Zhihong, Pan
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.557-569
    • /
    • 2022
  • Vibration-based structural health monitoring (SHM) is crucial for the dynamic maintenance of civil building structures to protect property security and the lives of the public. Analyzing these vibrations with modern artificial intelligence and deep learning (DL) methods is a new trend. This paper proposed an unsupervised deep learning method based on a convolutional autoencoder (CAE), which can overcome the limitations of conventional supervised deep learning. With the convolutional core applied to the DL network, the method can extract features self-adaptively and efficiently. The effectiveness of the method in detecting damage is then tested using a benchmark model. Thereafter, this method is used to detect damage and instant disaster events in a rubber bearing-isolated gymnasium structure. The results indicate that the method enables the CAE network to learn the intact vibrations, so as to distinguish between different damage states of the benchmark model, and the outcome meets the high-dimensional data distribution characteristics visualized by the t-SNE method. Besides, the CAE-based network trained with daily vibrations of the isolating layer in the gymnasium can precisely recover newly collected vibration and detect the occurrence of the ground motion. The proposed method is effective at identifying nonlinear variations in the dynamic responses and has the potential to be used for structural condition assessment and safety warning.

Evaluation of MUF uncertainty based on GUM method for benchmark bulk handling facility

  • Hyun Cheol Lee;Jung Youn Choi;Hana Seo;Hyun Ju Kim;Yewon Kim;Haneol Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.2937-2947
    • /
    • 2024
  • The Republic of Korea is performing independent national inspections under the IAEA's State System of Accounting for and Control (SSAC), and developing an evaluation methodology for the material unaccounted for (MUF) to reinforce capabilities with the purpose of assessment for the accounting system of the facility handling bulk nuclear materials. In relation to this, a new approach for MUF evaluation was proposed in this study based on the guide to the expression of uncertainty in measurement (GUM). Both the conventional MUF evaluation method and the GUM method were applied to a hypothetical list of inventory items including material balance. Considering the ease of uncertainty propagation according to the GUM, it was assumed that independent uncertainty factors correspond to random factors, while correlated uncertainty factors correspond to systematic factors. The total MUF uncertainties were similar for both methods; however, it was verified that some uncertainties were affected by the measurement procedure in the GUM method. Furthermore, the GUM method was found to be more conducive to conducting a factor analysis for the MUF uncertainty. It was therefore concluded that application of the GUM approach could be beneficial in cases of national safeguard inspections where factor analysis is required for MUF assessment.