• Title/Summary/Keyword: Assessment Vulnerability

Search Result 579, Processing Time 0.022 seconds

Health-care Needs of High-risk Pregnant Women Hospitalized in Maternal-Fetal Intensive Care Units: A Mixed-methods Design (산모 집중치료실에 입원한 고위험 임부의 건강관리 요구: 혼합적 연구방법 적용)

  • Kim, Hyunjin;Park, Horan
    • Women's Health Nursing
    • /
    • v.24 no.2
    • /
    • pp.196-208
    • /
    • 2018
  • Purpose: To identify the characteristics and health-care needs of high-risk pregnant women in maternal-fetal intensive care units (MFICU). Methods: A mixed-methods design was adopted. Data were collected from 78 high-risk pregnant women admitted to the MFICU. Qualitative data included ten participants' experiences with hospitalization and childbirth, which were analyzed using mixed content analysis. Quantitative data were analyzed using at-test and one-way ANOVA testing. Results: The average score for pregnancy and childbirth health-care needs was 3.54 points. Average score by area was before-admission health care (3.70), health care of baby (3.67), health of childbirth (3.61), postpartum health (3.51), and pregnancy health care during hospitalization (3.48). Qualitative results showed diverse feelings and experiences of high-risk pregnant women and their need for health care, which was expressed in three themes and 11 sub-themes. Conclusion: Nurses should recognize high-risk mothers' feelings and needs for pregnancy and childbirth-focused health care to help patients accept their vulnerability and cope positively.

Nonlinear dynamics and failure wind velocity analysis of urban trees

  • Ai, Xiaoqiu;Cheng, Yingyao;Peng, Yongbo
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.89-106
    • /
    • 2016
  • With an aim to assess the wind damage to urban trees in more realistic conditions, the nonlinear dynamics of structured trees subjected to strong winds with different levels is investigated in the present paper. For the logical treatment of dynamical behavior of trees, material nonlinearities of green wood associated with tree biomechanics and geometric nonlinearity of tree configuration are included. Applying simulated fluctuating wind velocity to the numerical model, the dynamical behavior of the structured tree is explored. A comparative study against the linear dynamics analysis usually involved in the previous researches is carried out. The failure wind velocity of urban trees is then defined, whereby the failure percentages of the tree components are exposed. Numerical investigations reveal that the nonlinear dynamics analysis of urban trees results in a more accurate solution of wind-induced response than the classical linear dynamics analysis, where the nonlinear effect of the tree behavior gives rise to be strengthened as increasing of the levels of wind velocity, i.e., the amplitude of 10-min mean wind velocity. The study of relationship between the failure percentage and the failure wind velocity provides a new perspective towards the vulnerability assessment of urban trees likely to fail due to wind actions, which is potential to link with the practical engineering.

Model Development and Analysis for Assessment of the National Defense Industry Quality Management (국방 군수업체 품질경영 수준 평가 모델 개발 및 분석)

  • Kim, Sung-Do;Bae, Suk-Joo;Yang, Ji-Eung;Chung, Kyu-Suk;Riew, Moon-Charn;Lim, Sung-Uk;Kim, Myung-joon;Park, Sang Ho;Jeong, Ji-Sun
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.2
    • /
    • pp.277-296
    • /
    • 2016
  • Purpose: Propose model to diagnose and assess National Defense Industry and quality management by investigating and analyzing established standard model. Methods: Research on established internal model including MB, EQA and JQA model and make standard index for quality index extraction and quantitative index to test objectively for internal state. Results: Extract advantage and disadvantage by performance of National Defense Industry level diagnose and build foundation for quality management policy and road map. Conclusion: Due to result of diagnostic assesment of quality management of national defense industry, dependability, SCQM and safety part shows vulnerability and require improvement and support.

Soil Loss Vulnerability Assessment in the Mekong River Basin

  • Thuy, Hoang Thu;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.37-47
    • /
    • 2017
  • The Mekong River plays an extremely important role in Southeast Asia. Flowing through six countries, including China, Myanmar, Thailand, Laos PDR, Cambodia, and Vietnam, it is a site of great biological and ecological diversity and the habitat of numerous species of fish. It also supports a very large population that lives along the river basin. Therefore, much attention has been focused on the giant Mekong River Basin, particularly, its soil erosion and sedimentation problems. In fact, many methods have been used to calculate and simulate these problems. However, in the case of the Mekong River Basin, the available data is limited because of the extreme size of the area (about $795,000km^2$) and lack of equipment systems in the countries through which the Mekong River flows. In this study, we applied the Universal Soil Loss Equation (USLE) model in a GIS (Geographic Information System) framework to calculate the amount of soil erosion and sediment load during the selected period, from 1951 to 2007. The result points out dangerous areas, such as the Upper Mekong River Basin and 3S Basin (containing the Sekong, Sesan, and Srepok Rivers) that are suffering the serious consequences of soil erosion problems. Moreover, the present model is also useful for supporting river basin management in the implementation of sustainable management practices in the Mekong River Basin and other basins.

Aftershock Fragility Assessment of Damaged RC Bridge Piers Repaired with CFRP Jackets under Successive Seismic Events (CFRP 교각 재킷 보수를 적용한 손상된 철근콘크리트 교량 교각의 여진 취약도 분석)

  • Jeon, Jong-Su;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.271-280
    • /
    • 2018
  • This paper presents a framework for developing aftershock fragility curves for reinforced concrete bridges initially damaged by mainshocks. The presented aftershock fragility is a damage-dependent fragility function, which is conditioned on an initial damage state resulting from mainshocks. The presented framework can capture the cumulative damage of as-built bridges due to mainshock-aftershock sequences as well as the reduced vulnerability of bridges repaired with CFRP pier jackets. To achieve this goal, the numerical model of column jackets is firstly presented and then validated using existing experimental data available in literature. A four-span concrete box-girder bridge is selected as a case study to examine the application of the presented framework. The aftershock fragility curves are derived using response data from back-to-back nonlinear dynamic analyses under mainshock-aftershock sequences. The aftershock fragility curves for as-built bridge columns are firstly compared with different levels of initial damage state, and then the post-repair effect of FRP pier jacket is examined through the comparison of aftershock fragility curves for as-built and repaired piers.

Earthquake risk assessment of seismically isolated extradosed bridges with lead rubber bearings

  • Kim, Dookie;Yi, Jin-Hak;Seo, Hyeong-Yeol;Chang, Chunho
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.689-707
    • /
    • 2008
  • This study presents a method to evaluate the seismic risk of an extradosed bridge with seismic isolators of lead rubber bearings (LRBs), and also to show the effectiveness of the LRB isolators on the extradosed bridge, which is one of the relatively flexible and lightly damped structures in terms of seismic risk. Initially, the seismic vulnerability of a structure is evaluated, and then the seismic hazard of a specific site is rated using an earthquake data set and seismic hazard maps in Korea. Then, the seismic risk of the structure is assessed. The nonlinear seismic analyses are carried out to consider plastic deformation of bridge columns and the nonlinear characteristics of soil foundation. To describe the nonlinear behaviour of a column, the ductility demand is adopted, and the moment-curvature relation of a column is assumed to be bilinear hysteretic. The fragility curves are represented as a log-normal distribution function for column damage, movement of superstructure, and cable yielding. And the seismic hazard at a specific site is estimated using the available seismic hazard maps. The results show that in seismically-isolated extradosed bridges under earthquakes, the effectiveness of the isolators is much more noticeable in the columns than the cables and girders.

Shear stress indicator to predict seismic performance of residential RC buildings

  • Tekeli, Hamide;Dilmac, Hakan;Demir, Fuat;Gencoglu, Mustafa;Guler, Kadir
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.283-291
    • /
    • 2017
  • A large number of residential buildings in regions subjected to severe earthquakes do not have enough load carrying capacity. The most of them have been constructed without receiving any structural engineering attention. It is practically almost impossible to perform detailed experimental evaluation and analytical analysis for each building to determine their seismic vulnerability, because of time and cost constraints. This fact points to a need for a simple evaluation method that focuses on selection of buildings which do not have the life safety performance level by adopting the main requirements given in the seismic codes. This paper deals with seismic assessment of existing reinforced concrete residential buildings and contains an alternative simplified procedure for seismic evaluation of buildings. Accuracy of the proposed procedure is examined by taking into account existing 250 buildings. When the results of the proposed procedure are compared with those of the detailed analyses, it can be seen that the results are quite compatible. It is seen that the accuracy of the proposed procedure is about 80% according to the detailed analysis results of existing buildings. This accuracy percentage indicates that the proposed procedure in this paper can be easily applied to existing buildings to predict their seismic performance level as a first approach before implementing the detailed and complex analyses.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.

Out-of-plane seismic failure assessment of spandrel walls in long-span masonry stone arch bridges using cohesive interface

  • Bayraktar, Alemdar;Hokelekli, Emin;Halifeoglu, Meral;Halifeoglu, Zulfikar;Ashour, Ashraf
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.83-96
    • /
    • 2020
  • The main structural elements of historical masonry arch bridges are arches, spandrel walls, piers and foundations. The most vulnerable structural elements of masonry arch bridges under transverse seismic loads, particularly in the case of out-of-plane actions, are spandrel wall. The vulnerability of spandrel walls under transverse loads increases with the increasing of their length and height. This paper computationally investigates the out-of-plane nonlinear seismic response of spandrel walls of long-span and high masonry stone arch bridges. The Malabadi Bridge with a main arch span of 40.86m and rise of 23.45m built in 1147 in Diyarbakır, Turkey, is selected as an example. The Concrete Damage Plasticity (CDP) material model adjusted to masonry structures, and cohesive interface interaction between the infill and the spandrel walls and the arch are considered in the 3D finite element model of the selected bridge. Firstly, mode shapes with and without cohesive interfaces are evaluated, and then out-of-plane seismic failure responses of the spandrel walls with and without the cohesive interfaces are determined and compared with respect to the displacements, strains and stresses.

Trauma-Associated Narcissistic Symptoms as a Differential Diagnosis from Post-Traumatic Stress Disorder - A Case Report - (외상후 스트레스 장애와 감별이 필요한 외상관련 자기애적 증상(TANS) - 증 례 보 고 -)

  • Jeon, Sang-Won;Park, Hyo-In;Kim, Dae-Ho
    • Anxiety and mood
    • /
    • v.5 no.2
    • /
    • pp.133-138
    • /
    • 2009
  • Diagnosing post-traumatic stress disorder (PTSD) is challenging for several reasons: a lack of training in trauma assessment for most clinicians, underreporting and avoidance by patients, the overlapping of symptoms, and a high comorbidity with other mental disorders. Thus, a careful evaluation and differential diagnosis are essential for the treatment and management of this population. A concept of posttraumatic reaction in people with narcissistic vulnerability, called Trauma-Associated Narcissistic Symptoms (TANS) had appeared in the literature; this has not been, however, systemically investigated. This study examines three cases of TANS that developed after traumatic events such as traffic accidents and physical assault. TANS may mimic PTSD and can show similar features; however, a careful attention to the context and meaning of symptoms can help the clinicians in differentiating TANS from PTSD. Clinicians working with trauma and compensation evaluators should be on alert for this easily overlooked condition.

  • PDF