• 제목/요약/키워드: Assembly Simulation

검색결과 593건 처리시간 0.023초

실차실험에 의한 집전계의 접촉 동특성 규명 (A Verification of the Contact Dynamics of the Current Collection System on a Test Run)

  • 김정수
    • 한국철도학회논문집
    • /
    • 제10권4호
    • /
    • pp.414-419
    • /
    • 2007
  • The contact characteristics of the current collection system are investigated by analyzing data collected during a test run of the Korean high speed rail vehicle. For the analysis, the signals from accelerometers and load cells attached to the various parts of the pantograph are analyzed in both the time and frequency domains. In the frequency domain, the pantograph response consists of low frequency components related to the rigid-body motion of the panhead assembly and high frequency components due to the structural vibration modes of the pantograph. The analysis shows that the inclusion of the high frequency structural vibration modes of the pantograph in the contact force calculation has a negligible effect on the predicted mean value of the contact force but significantly affects the magnitude of its fluctuations. This finding implies that numerical simulations using lumped element models of the pantograph may accurately predict the mean contact force but is limited in its capacity for predicting the fluctuation about the mean. Since the ratio of the fluctuation to the mean in the contact force increases with increased train speed, the limitation of the predictions based on numerical simulation results becomes more pronounced at higher train speed.

연료전지 냉각판의 냉각 특성에 대한 수치해석적 연구 (Numerical Simulation on Cooling Plates in a Fuel Cell)

  • 김윤호;이용택;이규정;김용찬;최종민;고장면
    • 설비공학논문집
    • /
    • 제19권1호
    • /
    • pp.86-93
    • /
    • 2007
  • The PEM (polymer electrolyte membrane) fuel cell is one of the promising fuel cell systems as a new small power generating device for automobiles and buildings. The optimal design of cooling plates installed between MEA (membrane electrode assembly) is very important to achieve high performance and reliability of the PEMFC because it is very sensitive to temperature variations. In this study, six types of cooling plate models for the PEMFC including basic serpentine and parallel shapes were designed and their cooling performances were analyzed by using three-dimensional fluid dynamics with commercial software. The model 3 designed by revising the basic serpentine model represented the best cooling performance among them in the aspect of uniformity of temperature distribution and thermal reliability, The serpentine models showed higher pressure drop than the parallel models due to a higher flow rate.

Study of a coronal jet observed by Hinode, SDO, and STEREO

  • 이경선;;문용재
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.35.2-35.2
    • /
    • 2011
  • We have investigated a coronal jet near the limb on 2010 June 27 by Hinode/X-Ray Telescope (XRT), EUV Imaging Spectrograph (EIS), SDO/Atmospheric Imaging Assembly (AIA), and STEREO. From EUV (AIA and EIS) and soft X-ray (XRT) images we identify the erupting jet feature in cool and hot temperatures. Using the high temporal and multi wavelength AIA images, we found that the hot jet preceded its associated cool jet and their structures are well consistent with the numerical simulation of the emerging flux-reconnection model. From the spectroscopic analysis, we found that the jet structure changes from blue shift to red one with time, which may indicate the helical structure of the jet. The STEREO observation, which enables us to observe this jet on the disk, shows that there was a dim loop associated with the jet. On the other hand, we found that the structure of its associated active region seen in STEREO is similar to that in AIA observed 5 days before. Based on this fact, we compared the jet morphology on the limb with the magnectic fields extrapolated from a HMI vector magnetogram of this active region observed on the disk. Interestingly, the comparison shows that the open and closed magnetic field configuration correspond to the jet and the dim loop, respectively, as the Shibata's jet model predicted.

  • PDF

원환형 영구자석을 이용한 관성력 발전장치 소형화 설계 (Miniaturized Setback Generators Using Ring-Shaped Magnet for Power Supply of Small-Caliber Electronic Fuze)

  • 윤상희
    • 한국군사과학기술학회지
    • /
    • 제8권2호
    • /
    • pp.58-66
    • /
    • 2005
  • This paper presents miniaturized setback generators based on the conversion of mechanical energy into electrical energy for military applications, especially power supply for electronic fuzes. In order to minimize the volume of setback generators, a ring-shaped magnet enclosing a coil assembly is adopted. A mechanical safety system, shear plate, is used as a release mechanism of the setback generators to prevent the generators from operating accidentally. The setback generators are intended not to ignite an electrical detonator but to charge a capacitor which is capable of driving electronic circuit of fuze. We design the setback generators using the simulation results of an electromagnetic analysis tool, $Maxwell^{(R)}$ 2D. In experimental study, we perform safety tests of the shear plate and firing tests of the fabricated setback generators. The present setback generators show that the voltage of 14.2V is charged at the capacitor of $30{\mu}F$ within the charging time of 0.68msec and the critical acceleration for safety is 5,000G, thus verifying that the setback generators with a ring-shaped permanent magnet can be applicable to the power supply of small-caliber electronic fuze.

차체 사이드 패널 조립을 위한 디지털 레이저용접 셀 구현 (Implementation of Digital Laser Welding Cell for Car Side Panel Assembly)

  • 박홍석;최흥원;강무진
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.113-120
    • /
    • 2005
  • Because of the turbulent markets and the increasing demand on product quality, the application of new technology to practice is increasingly important. In case of automotive industries, they take interest in laser welding to solve these problems because laser welding has many advantages such as good accessibility, welding quality, fast welding speed and so on. To apply this technology to welding of car body, the data of laser welding are collected through lots of the experiment according to the material, geometry and layer number of welding points. Based on the experiment results and the information of product, i.e. the car side panel, the clustering of stitches for laser welding was carried out and the optimal equipments are selected through the comparison between the requirements of welding and the potential of equipments. Using these results, laser welding cell for the car side panel are configured with the concept of the digital manufacturing, which ensures maximum planning security with visualization and simulation. Finally, the optimal laser welding cell is chosen by the evaluation of alternative cells with assessment criteria.

Numerical Simulation of Welding Residual Stress Distribution on T-joint Fillet Structure

  • Hwang, Se-Yun;Lee, Jang-Hyun;Kim, Sung-Chan;Viswanathan, Kodakkal Kannan
    • International Journal of Ocean System Engineering
    • /
    • 제2권2호
    • /
    • pp.82-91
    • /
    • 2012
  • Fillet welding is widely used in the assembly of ships and offshore structures. The T-joint configuration is frequently reported to experience fatigue damage when a marine structure meets extreme loads such as storm loads. Fatigue damage is affected by the magnitude of residual stresses on the weld. Recently, many shipping registers and design guides have required that the fatigue strength assessment procedure of seagoing structures under wave-induced random loading and storm loading be compensated based on the effect of residual stresses. We propose a computational procedure to analyze the residual stresses in a T-joint. Residual stresses are measured by the X-ray diffraction (XRD) method, and a 3-D finite element analysis (FEA) is performed to obtain the residual stress profile in the T-joint. The proposed finite element model is validated by comparing experiments with computational results, and the characteristics of the residual stresses in the T-joint are discussed.

ASSESSMENT OF THE TiO2/WATER NANOFLUID EFFECTS ON HEAT TRANSFER CHARACTERISTICS IN VVER-1000 NUCLEAR REACTOR USING CFD MODELING

  • MOUSAVIZADEH, SEYED MOHAMMAD;ANSARIFAR, GHOLAM REZA;TALEBI, MANSOUR
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.814-826
    • /
    • 2015
  • The most important advantage of nanoparticles is the increased thermal conductivity coefficient and convection heat transfer coefficient so that, as a result of using a 1.5% volume concentration of nanoparticles, the thermal conductivity coefficient would increase by about twice. In this paper, the effects of a nanofluid ($TiO_2$/water) on heat transfer characteristics such as the thermal conductivity coefficient, heat transfer coefficient, fuel clad, and fuel center temperatures in a VVER-1000 nuclear reactor are investigated. To this end, the cell equivalent of a fuel rod and its surrounding coolant fluid were obtained in the hexagonal fuel assembly of a VVER-1000 reactor. Then, a fuel rod was simulated in the hot channel using Computational Fluid Dynamics (CFD) simulation codes and thermohydraulic calculations (maximum fuel temperature, fluid outlet, Minimum Departure from Nucleate Boiling Ratio (MDNBR), etc.) were performed and compared with a VVER-1000 reactor without nanoparticles. One of the most important results of the analysis was that heat transfer and the thermal conductivity coefficient increased, and usage of the nanofluid reduced MDNBR.

충전해석에 의한 Plug Cover Housing 금형의 피드시스템 설계 (Designing Mold Feed Systems for Plug Cover Housing with Filling Analysis)

  • 박종천;유만준
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.123-130
    • /
    • 2018
  • In this study, the optimum design of mold feed systems is determined for plug cover housing (PCH), which is a cover-assembly product that protects the wiring of automobile connectors. The design goal is to achieve the filling balance of the resin in the left and right covers while avoiding the occurrence of weld lines in the hinge as much as possible. For the optimization, an orthogonal array experiment and a main effect analysis of the design factors are performed, and the factors that cause the interactions with the two design characteristics are selected as the design variables. We present some design alternatives, i.e., some combinations of the design variables, and analyze the filling-simulation results, expected molding risk, and cost economics to select an optimum design solution among the design alternatives. In the optimal solution, the weld line is generated at a position outside the hinge, and the filling balance is also acceptable, showing that both design goals can be satisfied simultaneously despite conflicting with each other.

Analysis of Magnetic Dipole Moment for a 300-W Solar-Cell Array

  • Shin, Goo-Hwan;Kim, Dong-Guk;Kwon, Se-Jin;Lee, Hu-Seung
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.181-186
    • /
    • 2019
  • The attitude information of spacecraft can be obtained by the sensors attached to it using a star tracker, three-axis magnetometer, three-axis gyroscope, and a global positioning signal receiver. By using these sensors, the spacecraft can be maneuvered by actuators that generate torques. In particular, electromagnetic-torque bars can be used for attitude control and as a momentum-canceling instrument. The spacecraft momentum can be created by the current through the electrical circuits and coils. Thus, the current around the electromagnetic-torque bars is a critical factor for precisely controlling the spacecraft. In connection with these concerns, a solar-cell array can be considered to prevent generation of a magnetic dipole moment because the solar-cell array can introduce a large amount of current through the electrical wires. The maximum value of a magnetic dipole moment that cannot affect precise control is $0.25A{\cdot}m^2$, which takes into account the current that flows through the reaction-wheel assembly and the magnetic-torque current. In this study, we designed a 300-W solar cell array and presented an optimal wire-routing method to minimize the magnetic dipole moment for space applications. We verified our proposed method by simulation.

Controlling-strategy design and working-principle demonstration of novel anti-winding marine propulsion

  • Luo, Yaojing;Ai, Jiaoyan;Wang, Xueru;Huang, Peng;Liu, Gaoxuan;Gong, Wenyang;Zheng, Jianwu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.48-59
    • /
    • 2020
  • A traditional propeller can easily become entangled with floating objects while operating. In this paper, we present a newly developed Electromagnetic-valve-control-based Water-jet Propulsion System (ECWPS) for an unmanned surface cleaning vessel that can be flexibly controlled via a Micro Control Unit (MCU). The double-structure was adapted to the unmanned surface cleaning vessel for floating-collection missions. Computational Fluid Dynamics (CFD) software for operating effect simulation was also used to reveal the working principle of the ECWPS under different conditions. Neglecting the assembly technique, the design level, controlling strategy, and maneuvering performance of the ECWPS reached unprecedented levels. The ECWPS mainly consists of an Electromagnetic-valve Array (EA), pipeline network, control system, and water-jet source. Both CFD analyses and experimental results show that the hydraulic characteristic of the ECWPS was predicted reasonably, which has enormous practical value and development prospects.