• Title/Summary/Keyword: Assembly Modeling

Search Result 304, Processing Time 0.026 seconds

Non-uniform virtual material modeling on contact interface of assembly structure with bolted joints

  • Cao, Jianbin;Zhang, Zhousuo;Yang, Wenzhan;Guo, Yanfei
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.557-568
    • /
    • 2019
  • Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the effect of rough contact surface on dynamic characteristics of bolted joint.

Analysis of How the Bonding Force between Two Assemblies Affects the Flight Stability of a High-speed Rotating Projectile (이종결합 고속회전 발사 탄의 비행 안정성에 결합력이 미치는 영향성 분석)

  • Lee, Sang-bong;Choi, Nak-sun;Lee, Jong-hyeon;Kim, Sang-min;Kang, Byung-duk
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.255-268
    • /
    • 2021
  • Purpose: We sought to understand why a high-speed rotating projectile featuring a fuze-and-body assembly sometimes exhibited airburst, and we intended to improve the flight stability by eliminating airburst. Methods: We performed characteristic factor analysis, structural mechanics modeling, and dynamic modeling and simulation; and we scheduled firing tests to discover the cause of airburst. We used a step-by-step procedure to analyze the reliability function for selecting the bonding force standard that prevents airburst. Results: The 00MM high-speed rotating projectile features a fuze bonded to a body assembly; the bonding sometimes can break on firing. The resulting contact force, vibration and roll damping during flight generated yaw. Flight became unstable; fuze operation triggered an airburst. Our reliability test improved the bonding force standard (the force was increased). When the bonding force was at least the minimum required, a firing test revealed that airburst/flight instability disappeared. Conclusion: Analysis and identification of the causes of flight instability and airburst render military training safer and enhance combat power. Ammunition must perform as designed. Our method can be used to set standards that improve the performances of similar types of ammunition.

Implementation of 3D maintenance manual for Military aircrafts using 3D modeling software (3D모델링 SW를 활용한 군용 항공기 3D 정비매뉴얼 개발)

  • Song, Jae-Yong;Kim, Jong-Seong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.4
    • /
    • pp.19-32
    • /
    • 2021
  • It is well known that any maintenance works for aircrafts must be carried out strictly in accordance with the specified maintenance manuals, especially for military airplanes. According to our previous studies, the largest portion of the maintenance jobs for military aircrafts is found to be related to the assembly/disassembly of various parts, which requires precise understanding of the work procedures as well as correlation between interconnected parts let alone grasping of the exact shapes of parts involved. However, the conventional manuals for aircraft maintenance have failed to provide enough information required for the efficient maintenance except for simple texts and vague pictures, which are far from being sufficient sets of information. On the contrary, unlike incomplete conventional manuals with poor contents, 3D modeling SW could provide us with not only powerful visualization tool even to see through inside any assembly but also freedom to watch parts under test from any angle we want. In addition, the maintenance personnels could learn the precise maintenance procedures through repeatedly watching 3D animated version of the maintenance work as if they were on the field. In this study, we have suggested the efficient procedures to develop 3D manual for aircraft maintenance using 3D modeling SW, Solidworks and implemented a 3D maintenance manual for Integrated Drive Generator(IDG) in Boeing 747. Characteristics of the developed 3D manual has been analyzed in comparison with the conventional ones as well. It is shown that the suggested method could be easily applied to develop a 3D maintenance manual for commercial airplanes since the maintenance works involving assembly/disassembly of major parts are very similar regardless of aircraft types.

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.

Development of Analysis Method and Experimental Equipment for Fatigue Durability of Automotive Wire Harness System (자동차 와이어 하네스 피로내구 해석 방법론 및 시험기기 개발)

  • Lee, Heung-Shik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • In this study, the methodology for the fatigue life prediction using finite element method(FEM) in wire, bundle and assembly level of the wire harness system and the development of the fatigue life test machine for the numerical analysis are investigated. To obtain stress-life(S-N) histories of the componential wires of the system, five kinds of wires are prepared and applied to the repeated bending motion using developed fatigue life test equipment. Equivalent model of the wire from the rule of mixtures theory is used for the material modeling of sheath and wire core combination. Contact conditions among the wires, taping conditions are established through the bundle level test and numerical bundle analysis. Wire and bundle level results are adopted for the assembly level analysis. For the assembly level analysis, real wire harness system including bundle and grommet is numerically modeled and applied contact condition between wires with real opening motion. The fatigue life more than 700,000 cycles of the assembly is obtained from the FEM, and it is confirmed that the result has good agreement with the experimental result.

An Evaluation on Thermal-Structural Behavior of Nozzle Assembly during Burning Time (연소시간 중 노즐조립체의 열-구조적 거동분석에 관한 연구)

  • Ro, Younghee;Seo, Sanggyu;Jeong, Seongmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.536-542
    • /
    • 2017
  • A great deal of difficulty is encountered in the thermo-mechanical analyses of nozzle assembly for solid propellant rocket motors. The main issue in this paper is the modeling of the boundary conditions and the connections between the various components-gaps, relative movements of the components, contacts, friction, etc. This paper evaluated the complex phenomena of nozzle assembly during burning time with co-simulation which include fluid, thermal surface reaction/ablation and structural analysis. The validity of this approach was verified by comparison of analysis results with measured strains.

  • PDF

Research on Ontology-based Task Adaptability Improvement for Digital Human Model (온톨로지 기반 디지털 휴먼모델의 작업 적응성 제고 방안 연구)

  • Kang, Su-Ho;Sohn, My-E
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.79-90
    • /
    • 2012
  • In digital virtual manufacturing simulation, Digital Human widely used to optimal workplace design, enhancing worker safety in the workplace, and improving product quality. However, the case of ergonomics simulation solutions to support digital human modeling, Optimal DHM (Digital Human Model) data needed to develop and perform DHM will collect information related to the production process. So simulation developer has burden of collecting information. In this study, to overcome the limitations of existing solutions, we proposed the ADAGIO(Automated Digital humAn model development for General assembly usIng Ontology) framework. The ADAGIO framework was developed for DHM ontology to support optimal deployment of digital virtual environment and in order to ensure consistency of simulation components that are required for simulation modeling was made of a library.

Unsteady heat exchange at the dry spent nuclear fuel storage

  • Alyokhina, Svitlana;Kostikov, Andrii
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1457-1462
    • /
    • 2017
  • Unsteady thermal processes in storage containers with spent nuclear fuel were modeled. The daily fluctuations of outer ambient temperatures were taken into account. The modeling approach, which is based on the solving of conjugate and inverse heat transfer problems, was verified by comparison of measured and calculated temperatures in outer channels. The time delays in the reaching of maximal temperatures for each spent fuel assembly were calculated. Results of numerical investigations show that daily fluctuation of outer temperatures does not have a large influence on the maximal temperatures of stored spent fuel, so that fluctuation can be neglected and only daily average temperature should be considered for safety estimation using the "best estimation" approach.

A Study on Machine Vision System and Camera Modeling with Geometric Distortion (기하학적 왜곡을 고려한 카메라 모델링 및 머신비젼 시스템에 관한 연구)

  • 계중읍
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.64-72
    • /
    • 1998
  • This paper a new approach to the design of machine vision technique with a camera modeling that accounts for major sources of geometric distortion, namely, radial, decentering, and thin prism distortion. Radial distortion causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering , that is , the optical centers of lens design and manufacturing as well as camera assembly. It is our propose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing. The performance of proposed vision system is illustrated by simulation and experiment.

Using Geometric Constraints for Feature Positioning (특징형상 위치 결정을 위한 형상 구속조건의 이용)

  • Kim, S.H.;Lee, K.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.84-93
    • /
    • 1996
  • This paper describes the development of new feature positioning method which embedded into the top-down assembly modeling system supporting conceptual design. In this work, the user provides the geometric constraints representing the position and size of features, then the system calculates their proper solution. The use of geometric constraints which are easy to understand intuitively enables the user to represent his design intents about geometric shapes, and enables the system to propagate the changes automatically when some editing occurs. To find the proper solution of given constraints, the Selective Solving Method in which the redundant or conflict equations are detected and discarded is devised. The validity of feature shapes satisfying the constraints can be maintained by this technique, and under or over constrained user-defined constraints can also be estimated. The problems such as getting the initial guess, controlling the multiple solutions, and dealing with objects of rotational symmetry are also resolved. Through this work, the feature based modeling system can support more general and convenient modeling method, and keeps the model being valid during modifying models.

  • PDF