• Title/Summary/Keyword: Assembly Error

Search Result 279, Processing Time 0.025 seconds

A Note on the Scheduling Problem in the Two-stage Assembly-type Flowshop (두단계 조립시스템에서의 일정계획문제에 관한 소고)

  • Yoon Sang-Hum;Kim Ho-Joon;Kwon Soo-Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.24-28
    • /
    • 2004
  • This paper considers a scheduling problem concerned with an assembly system where two components are first treated In their own parallel machines and then pulled to be assembled into a final product at a single assembly machine. The objective measure is the mean completion time of jobs(a finite number of products). Through characterizing solution properties, we obtain the worst case error bounds of an arbitrary permutation and a SPT based heuristic.

Design and Implementation of the Automatic cable assembly test system that can test cable assembly effectively

  • Jang, Ki-Mang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.7
    • /
    • pp.1-10
    • /
    • 2018
  • In this paper, we propose the principles and design details of Automatic cable assembly test system and show its utility. Testing the cable assembly is required periodically or non-periodically in the system that the cable assembly performance is quite important like military equipment. There are several weaknesses when humans test the cable assembly manually. It not only takes much time but also could happen human error. To improve these disadvantages, I developed Automatic cable assembly test system. The system can be implemented by building switching control system that connect and disconnect the cable assembly and measuring devices. Through the result of the cable assembly test with this test system, we show this system makes test time short and improves of test reliability as compared with manual test.

A Dynamic Offset and Delay Differential Assembly Method for OBS Network

  • Sui Zhicheng;Xiao Shilin;Zeng Qingji
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.234-240
    • /
    • 2006
  • We study the dynamic burst assembly based on traffic prediction and offset and delay differentiation in optical burst switching network. To improve existing burst assembly mechanism and build an adaptive flexible optical burst switching network, an approach called quality of service (QoS) based adaptive dynamic assembly (QADA) is proposed in this paper. QADA method takes into account current arrival traffic in prediction time adequately and performs adaptive dynamic assembly in limited burst assembly time (BAT) range. By the simulation of burst length error, the QADA method is proved better than the existing method and can achieve the small enough predictive error for real scenarios. Then the different dynamic ranges of BAT for four traffic classes are introduced to make delay differentiation. According to the limitation of BAT range, the burst assembly is classified into one-dimension limit and two-dimension limit. We draw a comparison between one-dimension and two-dimension limit with different prediction time under QoS based offset time and find that the one-dimensional approach offers better network performance, while the two-dimensional approach provides strict inter-class differentiation. Furthermore, the final simulation results in our network condition show that QADA can execute adaptive flexible burst assembly with dynamic BAT and achieve a latency reduction, delay fairness, and offset time QoS guarantee for different traffic classes.

Research on the thermal deformation model ins using by regression analysis (회귀분석을 이용한 열변형 오차 모델링에 관한 연구)

  • 김희술;고태조;김선호;김형식;정종운
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.47-52
    • /
    • 2002
  • There are many factors in machine tool error. These are thermal deformation, geometric error, machine's part assembly error, error caused by tool bending. Among them thermal error is 70% of total error of machine tool . Prediction of thermal error is very difficult. because of nonlinear tendency of machine tool deformation. In this study, we tried thermal error prediction by using multi regression analysis.

  • PDF

A New Approach to Fragment Assembly in DNA Sequencing

  • Pevzner, Pavel-A.;Tang, Haixu;Waterman, Micheal-S.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.08a
    • /
    • pp.11-35
    • /
    • 2001
  • For the last twenty years fragment assembly in DNA sequencing followed the "overlap - layout - consensus"paradigm that is used in all currently available assembly tools. Although this approach proved to be useful in assembling clones, it faces difficulties in genomic shotgun assembly: the existing algorithms make assembly errors and are often unable to resolve repeats even in prokaryotic genomes. Biologists are well-aware of these errors and are forced to carry additional experiments to verify the assembled contigs. We abandon the classical “overlap - layout - consensus”approach in favor of a new Eulerian Superpath approach that, for the first time, resolves the problem of repeats in fragment assembly. Our main result is the reduction of the fragment assembly to a variation of the classical Eulerian path problem. This reduction opens new possibilities for repeat resolution and allows one to generate error-free solutions of the large-scale fragment assemble problems. The major improvement of EULER over other algorithms is that it resolves all repeats except long perfect repeats that are theoretically impossible to resolve without additional experiments.

  • PDF

Assembly performance evaluation method for prefabricated steel structures using deep learning and k-nearest neighbors

  • Hyuntae Bang;Byeongjun Yu;Haemin Jeon
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • This study proposes an automated assembly performance evaluation method for prefabricated steel structures (PSSs) using machine learning methods. Assembly component images were segmented using a modified version of the receptive field pyramid. By factorizing channel modulation and the receptive field exploration layers of the convolution pyramid, highly accurate segmentation results were obtained. After completing segmentation, the positions of the bolt holes were calculated using various image processing techniques, such as fuzzy-based edge detection, Hough's line detection, and image perspective transformation. By calculating the distance ratio between bolt holes, the assembly performance of the PSS was estimated using the k-nearest neighbors (kNN) algorithm. The effectiveness of the proposed framework was validated using a 3D PSS printing model and a field test. The results indicated that this approach could recognize assembly components with an intersection over union (IoU) of 95% and evaluate assembly performance with an error of less than 5%.

A Method of Detecting Pointer Access Error based on Disassembled Codes (역어셈블에 기반한 포인터 참조 오류 검출 방법)

  • Kim, Hyunsoo;Kim, Byeong Man;Huh, Nam Chul;Shin, Yoon Sik
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.5
    • /
    • pp.13-23
    • /
    • 2015
  • This thesis proposes a method for effectively detecting memory errors with low occurrence frequency that may occur depending on runtime situation by analyzing assembly codes obtained by disassembling an executable file. When applying the proposed method to various programs having no compilation error, a total of about 750 potential errors taken about 90 seconds are detected among 1 million lines of assembly codes corresponding to a total of about 10 thousand functions.

Detection of Potential Invalid Function Pointer Access Error based on Assembly Codes (어셈블리어 코드 기반의 Invalid Function Pointer Access Error 가능성 검출)

  • Kim, Hyun-Soo;Kim, Byeong-Man
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.938-941
    • /
    • 2010
  • Though a compiler checks memory errors, it is difficult for the compiler to detect function pointer errors in code level. Thus, in this paper, we propose a method for effectively detecting Invalid function pointer access errors, by analyzing assembly codes that are obtained by disassembling an executable file. To detect the errors, assembly codes in disassembled files are checked out based on the instruction transition diagrams which are constructed through analyzing normal usage patterns of function pointer access. When applying the proposed method to various programs having no compilation error, a total of about 500 potential errors including the ones of well-known open source programs such as Apache web server and PHP script interpreter are detected among 1 million lines of assembly codes corresponding to a total of about 10 thousand functions.

  • PDF

Ship block assembly sequence planning considering productivity and welding deformation

  • Kang, Minseok;Seo, Jeongyeon;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.450-457
    • /
    • 2018
  • The determination of assembly sequence in general mechanical assemblies plays an important role in terms of manufacturing cost, duration and quality. In the production of ships and offshore plants, the consideration of productivity factors and welding deformation is crucial in determining the optimal assembly sequence. In shipbuilding and offshore industries, most assembly sequence planning has been done according to engineers' decisions based on extensive experience. This may result in error-prone planning and sub-optimal sequence, especially when dealing with unfamiliar block assemblies composed of dozens of parts. This paper presents an assembly sequence planning method for block assemblies. The proposed method basically considers geometric characteristics of blocks to determine feasible assembly sequences, as well as assembly process and productivity factors. Then the assembly sequence with minimal welding deformation is selected based on simplified welding distortion analysis. The method is validated using an asymmetric assembly model and the results indicate that it is capable of generating an optimal assembly sequence.

Experimental Study on Effects of Speed Error Disturbance on Reaction Wheel Control (속도 오차 외란이 반작용 휠 제어에 미치는 영향에 관한 실험적 연구)

  • Kim, Jichul;Lee, Hyungjun;Yoo, Jihoon;Oh, Hwasuk
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.95-102
    • /
    • 2016
  • There are many possible disturbance sources on such a spacecraft, but reaction wheel assembly (RWA) which is generally used for spacecraft attitude control is anticipated to be the largest. These effects on degradation of performance of spacecraft such as attitude stability. In reaction wheel, disturbance caused by imbalance and speed error. It is hard to emulate speed error disturbance because it is not coincide with wheel frequency. This paper concentrates on emulating and analyzing the speed error disturbance. Firstly, classify the causes that lead to speed error disturbance which generate RPM fluctuation. Secondly, simulated with disturbance driver module and reaction wheel assembly which are developed by Spacecraft Control Lab. Experimental investigations have been carried out to test the disturbance emulator module as a disturbance generator for RWA. Measurements and test have been conducted on various fault. Frequency analysis of test data show that speed error disturbance effects on wheel settling wheel speed or fluctuation type.