• Title/Summary/Keyword: Assembly Cost

Search Result 433, Processing Time 0.028 seconds

Low Cost, Large Area Nanopatterning via Directed Self-Assembly

  • Kim, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.24-25
    • /
    • 2011
  • Molecular self-assembly has several advantages over other nanofabrication methods. Molecular building blocks ensure ultrafine pattern precision, parallel structure formation allows for mass production and a variety of three-dimensional structures are available for fabricating complex structures. Nevertheless, the molecular interaction for self-assembly generally relies on weak forces such as van der Waals force, hydrogen bonding, or hydrophobic interaction. Due to the weak interaction, the structure formation is usually slow and the degree of ordering is low in a self-assembled structure. To promote self-assembly, directed assembly methods employing prepatterned substrates or external fields have been developed and gathered a great deal of technological attention as a next generation nanofabrication process. In this presentation a variety of directed assembly methods for soft nanomaterials including block copolymers, peptides and carbon nanomaterials will be introduced. Block copolymers are representative self-assembling materials extensively utilized in nanofabrication. In contrast to colloid assembly or anodized metal oxides, various shapes of nanostructures, including lines or interconnected networks, can be generated with a precise tunability over their shape and size. Applying prepatterned substrates$^{1,2}$ or introducing thickness modulation$^3$ to block copolymer thin films allowed for the control over the orientational and positional orderings of self-assembled structures. The nanofabrication processes for metals, semiconductors$^4$, carbon nanotubes$^{5,6}$, and graphene$^{6,7}$ templating block copolymer self-assembly will be presented.

  • PDF

A Study on the Manufacturing DMU for Automotive General Assembly (자동차 조립공장의 생산 DMU 적용에 관한 연구)

  • Kim, Gun-Yeon;Lee, Kang-Kul;Heo, Jun;Park, Tae-Keun;Noh, Sang-Do;Kim, Jung-Ho;Kim, Dong-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.162-169
    • /
    • 2005
  • To achieve rapid new car developments and cost saving, new approaches for automotive general assembly in manufacturing preparations are needed. In this paper, CAD and DMU technologies for design and evaluation of machines and equipments are discussed. Digital Mock-up based on 3-D CAD models usually apply in the area of concept design and design review. We focus on manufacturing preparations of the machine and equipment. Detail procedures, examples and considerations of DMU are suggested in this paper. By applying DMU in the manufacturing preparations of general assembly, time, cost and quality of engineering can be enhanced through engineering collaboration.

Implementation of AR based Assembly System for Car C/pad Assembly (차체 C/Pad 조립을 위한 증강현실 기반의 조립시스템 구현)

  • Park, Hong-Seok;Choi, Hung-Won;Park, Jin-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.37-44
    • /
    • 2008
  • Nowadays, the increasing global competition forces manufacturer to reduce the cost and time for implementation of manufacturing system. The AR(augmented reality) technology as a new human-machine interface introduces a noteworthy perspective for a new manufacturing system design. Using AR technology, a physically existing production environment can be superimposed with virtual planning objects. Therefore, the planning tasks can be validated without modeling the surrounding environment of the production domain during short process planning time. In this paper, we introduce the construction of AR browser and determine the optimal environment parameters for field application of AR system through lots of tests. And, many methods such as multi-marker coordinate system, division of virtual objects and so on, are proposed in order to solve the problems suggested from initial field test. Based on these tests and results, the test-bed of C/Pad assembly system is configured and robot program for C/Pad assembly is generated based on AR system.

A Study for Optimizing LCD Display Frame Assembly Process (LCD 디스플레이 프레임 조립 공정 최적화 연구)

  • Yoon, Cheol-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3654-3657
    • /
    • 2010
  • This paper studies the assembly process of LCD display frames to reduce product cost. First of all, OTRS and time study methodology were performed to analyze the efficiency of the assembly process. Next, various types of frame materials are evaluated whether they pass the reliability criteria or not. As a result, it is found that the productivity of LCD display assembly process maintains prefer level and some frame materials have an opportunity to reach the reliability criteria.

A Study of Balancing at Two-sided and Mixed Model Work Line Using Genetic Algorithm (효율적인 유전알고리듬을 이용하여 양면.혼합모델 작업라인 균형에 대한 연구)

  • 이내형;조남호
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.05a
    • /
    • pp.91-97
    • /
    • 2002
  • In this thesis presents line balancing problems of two-sided and mixed model assembly line widely used in practical fields using genetic algorithm for reducing throughput time, cost of tools and fixtures and improving flexibility of assembly lines. Two-sided and mixed model assembly line is a special type of production line where variety of product similar in product characteristics are assembled in both sides. This thesis proposes the genetic algorithm adequate to each step in tow-sided and mixed model assembly line with suitable presentation, individual, evaluation function, selection and genetic parameter. To confirm proposed genetic algorithm, we apply to increase the number of tasks in case study. And for evaluation the performance of proposed genetic algorithm, we compare to existing algorithm of one-sided and mixed model assembly line. The results show that the algorithm is outstanding in the problems with a larger number of stations or larger number of tasks.

  • PDF

An Efficient Operational Technique for constructing Flexible Cell Systemin Domestic Electronic Assembly Industry and Case Study (국내 전자조립업체에서 성공적인 유연 셀 생산시스템 구축 방안과 적용 사례)

  • 박연기;안예환;한경희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.50
    • /
    • pp.209-219
    • /
    • 1999
  • This paper presents an efficient operational technique of material feeding process, trainning for multi-operations, machine conditions, and role of foreman and material-supplying man, for constructing the flexible assembly cells in the domestic electronic industries. And an practical method for computing the number of economical cells is also presented by the cost-effective model that compares the additional assembly machine requirement with the four reductive effects including WIP/finished goods inventory, the troubles in the assembly line, the opportunity loss for small order quantity, and amounts of production management due to the introduction of cell line. An case study is introduced in for a domestic electronic assembly line at the end.

  • PDF

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • Jeong, Yeon-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF

A Synchronized Job Assignment Model for Manual Assembly Lines Using Multi-Objective Simulation Integrated Hybrid Genetic Algorithm (MO-SHGA) (다목적 시뮬레이션 통합 하이브리드 유전자 알고리즘을 사용한 수동 조립라인의 동기 작업 모델)

  • Imran, Muhammad;Kang, Changwook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.211-220
    • /
    • 2017
  • The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.

Development of Creative Design and Construction Methods of Bridge Piers using 3D Model (3차원 모델 기반의 미적 교각 설계 및 시공 기술 개발)

  • Lee, Sang-Yong;Dong, Ngoc Son;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • Bridge piers typically have circular or rectangular shapes without decorative design. Prefabrication for accelerated construction has been widely adopted in bridge structures. Cost for steel formwork is a main restriction of creative irregular shapes. 3D modelling techniques allow creative design of columns and 3D printing provides possibility to minimize the fabrication cost. In this paper, 3D design process of bridge piers was suggested by converting 2D picture into 3D decorative shape. Formwork design using 3D printed panels was also proposed and mock-up tests were conducted. Precast columns need accurate geometry control from fabrication to assembly. Laser scanning and geometry control devices were adopted. Through the digitalized process of design, fabrication and assembly, creative design of structures can be realized in reasonable cost range.

A Design of Sampling Inspection Plan for Single Manufacturing Production Process (제조생산공정의 경제적 샘플링 검사방식 설계)

  • 서경범;박명규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.269-277
    • /
    • 1998
  • In this study, a traditional concept of sampling inspection plan for the quality assurance system is extended to a consideration of economic aspects in total production system by representing and analyzing the effects between proceding/succeeding production process including inspection. This approach recognizes that the decision to be made at one manufacturing process (or assembly process) determine not only the cost and the average outgoing quality level of that process but also the input parameters of the cost and the incoming quality to the succeeding process. By analyzing the effects of the average incoming and outgoing quality, manufacturing/assembly quality level and sampling inspection plan on the production system, mathematical models and solution technique to minimize the total production cost for a single product manufacturing system with specified average outgoing quality limit (AOQL) are suggested.

  • PDF