• Title/Summary/Keyword: Aspherical

Search Result 188, Processing Time 0.024 seconds

Design of a Tele-centric Wide Field Lens with High Relative Illumination and Low Distortion Using Third-order Aberration Analysis

  • Kim, Kae-Hong;Kim, Yeong-Sik;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.679-686
    • /
    • 2015
  • This paper presents a design method for improving the low relative illumination and large distortion due to widening the field of a system. A tele-centric optical system in image space was suggested to increase the relative illumination. Through the analyses of the third-order aberrations affected by introducing aspherical surfaces, we have proposed a method to determine analytically what surface should be aspheric to correct each aberration effectively. By utilizing this method to design a wide field lens, a tele-centric wide field lens with f-number of F/2.0 was obtained. Even though the field angle is 120 degrees, it has a very low distortion less than -2% and high relative illumination more than 73.7%. In conclusion, this analytic method for selecting aspherical surfaces is expected to serve as a useful way to find design solutions.

A Study on the Cutting Conditions in Machining for Nanometer Surface (나노미터 표면가공시 절삭조건에 관한 연구)

  • 문재일;김부태;김영일;허성중
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.152-157
    • /
    • 1998
  • Since early 1960s, the high precision machining technology, so called ultra-precision technology or nano technology, has been developed in many Held based on single point diamond turning technology. The major application of this technology is the optical components with aspherical surfaces. Now a days, customer requires the smaller and lighter optical elements, such as camera video and etc., with higher performance for convenience. So, the manufacturer focuses on the ultra-precision technology. Thus, this technology becomes the major target to challenge the advanced barrier for the next machining technology.

  • PDF

A Study on the Analysis of Injection Molding of F-theta Lens (에프세타 렌즈의 사출 성형 해석에 관한 연구)

  • Park, Yong-Woo;Moon, Sung-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this study, we investigate the injection molding of f-theta lens, an important element of the laser scanning unit of laser printers and scanning systems. The f-theta lens is an aspherical plastic lens that must be molded with a precision of seconds. An injection molding method is often used for mass producing aspherical plastic lenses at a low cost. In the injection molding process, costs related to forming and injection are included. Therefore, in this study, to determine the shrinkage and deformation of injection molded f-theta lens, we predict the pressure and temperature distributions. Further, based on the analysis of the predictions, we maximize the design efficiency and verify the cost and development period reduction.

A Study on Aspheric Optics European LED Streetlights Type for the Prevention of Light Pollution (빛 공해 방지를 위한 유럽형 LED 가로등용 비구면 광학계에 관한 연구)

  • Lee, Shi-Woo;Lee, Chang-Soo;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.429-436
    • /
    • 2013
  • In this study, we researched a pendant-type aspherical optical system, which could be applied to street lighting and security lighting in Europe. The goal of this research was eco-friendly artificial lighting that could be used for the one-to-one replacement of ordinary lighting. LED lighting was miniaturized by using one COB LED Module and one aspherical optical system, which could control the luminosity of the LED. Through the aspherical optical system, the light distribution angle could be controlled in a range of $140^{\circ}$ for the X-axis and $40^{\circ}$ for the Y-axis. This means that this optical system is appropriate for catenary-type lighting, which is widely used in Europe on both narrow and broad roads. The performance was determined using a lighting simulation program. This lighting system simulation showed that road rates M4 and M5 could be satisfied, with the condition of a 13-m height and 50-m distance (U0 and TI). The simulation program estimated that light pollution, which disturbs sleep, could beeliminated in the European streetlight case. Determining methods for the light distribution control, performance, and optimal lighting setup conditions is very important to prevent light pollution. Moreover, the initial step of developing the lighting system design and post management will require an effort with much analysis.

Optical System Design Composed of Spherical SELFOC Lens and Aspherical Plastic Lens for Mobile Phone Camera (1매의 구면 SELFOC 렌즈와 1매의 비구면 플라스틱 렌즈로 구성된 카메라폰용 광학계의 설계)

  • Lee, Yong-Sun;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.108-115
    • /
    • 2008
  • We designed optical systems for a mobile phone camera using a spherical SELFOC lens and an aspherical plastic lens. Since the radial index distribution gives an additional design parameter for optical design, an aspheric lens could be replaced by a spherical lens. The imaging performances of the design were compared with conventional 2P design composed of two aspherical plastic lenses. In the first stage of study, we designed 1GRIN 1P lenses by using commercially available SELFOC materials. But, the conventional 2P lenses had better performance than the 1GRIN 1P lenses. In the 1GRIN 1P designs, the performance depends on index variation of GRIN material, the larger variation gives the better performance. Hence, we tried to design by using fictitious GRIN materials which have large index variation. We found if the index variation could be increased to about 3 times that of currently available SELFOC materials, the 1GRIN 1P lens will have equivalent or better performance than the conventional 2P design.