• 제목/요약/키워드: Aspheric Glass Lens Mold

검색결과 32건 처리시간 0.028초

비구면 유리 렌즈 금형의 열응력 해석 (Thermal stress analysis for an aspheric glass lens mold)

  • 이영민;장성호;허영무;신광호;윤길상;정태성
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.125-131
    • /
    • 2008
  • In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical GMP processes were developed with an eye to mass production of precision optical glass parts by molding press. Generally because the forming stage in a GMP process is operated at high temperature above $570^{\circ}C$, thermal stresses and deformations are generated in the aspheric glass lens mold that is used in GMP process. Thermal stresses and deformations have negative influences on the quality of a glass lens and mold, especially the height of the deformed glass lens will be different from the height of designed glass lens. To prevent the problems of a glass lens mold and the glass lens, it is very important that the thermal stresses and deformations of a glass lens mold at high forming temperature are considered at the glass molds design step. In this study as a fundamental study to develop the molds used in an aspheric glass lens fabrication, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally using analysis results, it was predicted the height of thermally deformed guide ring and calculated the height of the guide ring to be modified, $64.5{\mu}m$. This result was referred to design the glass lens molds for GMP process in production field.

금형가공을 위한 초정밀 나노가공기의 구조해석 (Structure analysis of ultra precision nano-scale machine for mold processing)

  • 백승엽;김선용
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.51-56
    • /
    • 2007
  • As various manufacturing technology of optical glass is developed, the aspheric lenses are supplied to many fields. Electronic or measuring instruments equipped with aspheric lens have recently been used since aspheric lens is more effective than spheric one. However, it is still difficult manufacture glass lens because of high cost and the short life of core. The demands of the aspheric glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. For the mass production of aspheric lens, specific molds with precisely machined cores should be prepared. In order to obtain competitiveness in the field of industrial manufacturing, a reduction in the development period for the batch machining of products is required. It is essential to analyze the stress distribution and deformations of machining system which is used for manufacturing the aspheric lens using FEM software ANSYS. Finite element simulations have been performed in order to study the influence of machining system which is developed in this study on structures. It is very important to understand the structural behavior of machining system. This paper investigated the static analysis and dynamic analysis of machining system for aspheric lens to predict the damage due to loading.

  • PDF

Glass Lens 가압성형의 열 변형에 의한 비구면 Lens 형상보정 ( I ) (Form Error Compensation of Aspheric lens considering Thermal Deformation on Glass Molding Press ( I ))

  • 이학석;이동길;박종락;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.354-354
    • /
    • 2008
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized is gradually increasing. Generally, the aspheric glass lens is manufactured by GMP(Grass Molding Press) method using WC(tungsten carbide) mold core. In this study, the thermal deformation which occurs in the cooling step of GMP was considered, and it was compensated the form of mold core. The lens which was molded by compensated mold core was satisfied that can be applied to the actual specifications.

  • PDF

순차이송 GMP 방식용 유리렌즈 금형의 열응력에 관한 연구 (A Study on the Thermal Stresses of the Glass Lens Mold Using in Progressive GMP Process)

  • 장성호;이영민;신광호;윤길상;정우철;정태성;허영무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.289-292
    • /
    • 2007
  • To prevent the damage of glass lens molds and deterioration of glass lenses using in progressive GMP process, a thermal stress and a deformation of the glass lens molds at forming temperature should be considered in the design step. In this study, as a fundamental study to develop a multi cavity mold used in an aspheric glass lens molding, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally, using analysis results, we estimated the thermal stress in a glass lens mold and predicted a modified height of guide ring that determines the forming height of a glass lens.

  • PDF

비구면 Glass 렌즈 성형용 초경합금(WC) 코어의 DLC 코팅 효과 (DLC Coating Effect of WC Core Surface for Glass Molding Lens)

  • 김현욱;정상화;박용필;김상석;김혜정;김정호
    • 한국전기전자재료학회논문지
    • /
    • 제19권11호
    • /
    • pp.1050-1054
    • /
    • 2006
  • There have been intensive and continuous efforts in the field of DLC coating process because of their feature, like high hardness, high elasticity, abrasion resistance and chemical stability and have been applied widely the industrial areas. In this research, optimal grinding condition was investigated using Microlens Process Machine for the development of aspheric glass lens which is to be used for mobile phone module with 3 mega pixel and 2.5X optical zoom, and tungsten carbide(WC) mold cote was manufactured using high performance ultra precision machining and the effects of DLC coating on the form accuracy(PV) and surface roughness(Ra) of WC mold core was evaluated.

휴대폰 카메라용 비구면 Glass 렌즈 전사특성 분석 (Transcription Characteristics in the Molding of Aspheric Glass Lenses for Camera Phone Module)

  • 차두환;이준기;김민제;이동길;김혜정;김정호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.363-366
    • /
    • 2008
  • The transcription characteristics in the molding of aspheric glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. The molded lens showed a transcription ratio of 93.4%, which is obtained by comparing the form accuracy (PV) values of the mold and the molded lens. The transcription of the roughness topography was ascertained by bearing ratio analysis.

  • PDF

휴대폰 카메라용 비구면 Glass렌즈 전사특성 분석 (Transcription Characteristics in the Molding of Aspheric Glass Lenses for Camera Phone Module)

  • 차두환;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.336-336
    • /
    • 2008
  • The transcription characteristics in the molding of aspheric glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. The molded lens showed a transcription ratio of 93.4%, which is obtained bycomparing the form accuracy (PV) values of the mold and the molded lens. The transcription of the roughness topography was ascertained by bearing ratio analysis.

  • PDF

DOE를 적용한 카메라폰 모듈용 비구면 Glass렌즈의 성형조건 연구 ; 가압조건 (A Study on Molding Condition of Aspheric Glass Lenses for Mobile Phone Module Using Design of Experiments ; Pressing Condition)

  • 차두환;이준기;김상석;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.57-57
    • /
    • 2007
  • Aspheric glass lenses have many optical advantages, for glass have superior optical performance and an aspheric form can reduce optical aberrations. Recently, the use of it is rapidly expanding as the mass production becomes possible by glass molding press and so this method is considered as the best method for fabricating an aspheric glass lens, but it is difficult to control many parameters for pressing and cooling process. Design of experiments (DOE) is a very useful tool to design and analyze complicated industrial design problems. This study investigated the pressing conditions to mold aspheric glass lenses for mega pixel phone camera module using DOE method. We have applied fractional factorial design and the response variable was set form accuracy (PV) of aspheric surface of molded lens. The results of analysis indicates that all factors expect for pressing force of each step are available for the form accuracy (PV). It was the optimum condition of the designed pressing conditions for lowering the form accuracy(PV) value of molded lens that all factors were at the low level. The form accuracy (PV) of mold and molded lens under the optimum condition are $0.85\;{\mu}m$ and $0.922\;{\mu}m$ respectively.

  • PDF

DOE를 적용한 비구면 Glass 렌즈 성형용 초경합금(WC) 코어 연삭가공 최적화 (Optimal Grinding Condition of Tungsten Carbide(WC) for Aspheric Glass Lens Using DOE)

  • 김현욱;정상화;안준형;차두환;이동길;김상석;김혜정;김정호
    • 한국기계가공학회지
    • /
    • 제5권4호
    • /
    • pp.41-45
    • /
    • 2006
  • In recent years, the demands of the aspheric glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. Glass lens is manufactured by the forming with high precision mold core. This paper presents the analysis of optimal grinding condition of tungsten carbide(WC, Co 0.5%) using design of experiments(DOE). The process parameters are turbin spindle, work spindle, feedrate and depth of cut. The experiments results are evaluated by MINITAB software.

  • PDF