• Title/Summary/Keyword: Asphalt pavement

Search Result 667, Processing Time 0.022 seconds

Application of The Dynamic Cone Penetrometer for Strength Estimation of Pavement Foundation (현장에서의 동적관입시험을 이용한 노상토의 지지력 평가연구)

  • An, Ji-Hwan;Yang, Sung-Lin;Park, Hee-Mun;Kwon, Su-Ahn
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.17-26
    • /
    • 2004
  • The in-situ California Bearing Ratio (CBR) test has been widely used for evaluating the subgrade condition in asphalt concrete pavements. However, because the in-situ CBR test is expensive and takes plenty of time for operation, it is very difficult to figure out the in-situ characteristics of subgrade strength in detail. For faster and economical operation, the Dynamic Cone Penetrometer (DCP) has been often utilized for estimating the subgrade strength in the field. The relationship between the CBR value and DCP index obtained from the DCP testing has been studied using the laboratory and in-situ testing by other foreign researchers. The objective of this study is to determine the relationship between in-situ CBR value and DCP index of the subgrade materials used in Korea. The DCP index for evaluating the strength of subgrade materials produced in Korea is presented in this paper. Research results propose the regression equation to explain the relationship between the CBR and DCP tests. The in-situ CBR values of subgrade materials range from 20 to 45% indicating the good and sound subgrade condition.

  • PDF

Effect of Land Use on Urban Thermal Environments in Incheon, Korea (인천시에서 토지이용이 도시 열 환경에 미치는 영향)

  • Kong, Hak-Yang;Kim, Seog Hyun;Cho, Hyungjin
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.315-321
    • /
    • 2016
  • To identify the relationship between land use and thermal environment in an urban area, the air temperature was measured at different places of land use, and the changes of land use and air temperature were traced for 40 years in Incheon City. The relationship between land use and temperature was also investigated using satellite image data. The results of temperature measurements on a forest, a cropland (rice paddy), a bareland (school ground), and an urban area (asphalt road) from 19 to 21 August 2014 showed that air temperature was the highest on a pavement road. The temperature increased by about $1.4^{\circ}C$ ($0.035^{\circ}C/year$) for 40 years from 1975 to 2014 in Incheon. The changes in land use patterns of Incheon for the past 40 years showed that urban dry land, bareland and grassland have increased and cultivated land, wetland and forest land have decreased gradually. The land surface temperature (LST) was correlated with the normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI) extracted from Landsat satellite image. The land surface temperature was lower at higher NDVI, and higher at higher NDBI. Therefore, it is important to conserve and restore the land use of greenery, wetlands, and agricultural land in order to mitigate the heat island effect and improve the thermal environment in an urban area.

The Performance Analysis of Diamond Grinding for Existing Concrete Pavement (기존 콘크리트 포장의 성능 향상을 위한 다이아몬드 그라인딩 공법의 초기 공용성 평가)

  • Jung Jong-Duck;Ryu Sung-Woo;Han Seung-Hwan;Cho Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.77-88
    • /
    • 2006
  • The maintenance / repair of concrete pavements has become an issue as a result of increasing of concrete pavements' service year. Asphalt overlay is applied to the concrete pavements after partial repairs on all occasions. This thesis discusses the application standard, evenness, skid resistance, noise, economical efficiency, extension of life span, etc. of diamond grinding, a method of maintenance about concrete pavements. Based on this, it was applied to the field and measured the performance. It was measured the longitudinal evenness of before and after the construction through measurement equipment. and surveyed the skid resistance the each lane classified using the SN standard value. In case of noise, it is selected the kind of vehicle, velocity, then measured the noise between control and constructed site. In addition, it is evaluated the average texture depth. As a result of the analysis, longitudinal evenness is improved about $6{\sim}40%$, skid resistance is improved 66% at first section,37% at second section. Noise is reduced 3.4dB average, and average texture depth is 79% deeper than control section. Therefore, it can be concluded that diamond grinding is suitable as maintenance / repair method of concrete pavements.

  • PDF

Runoff Characteristics of Stormwater in Small City Urban Area (국내 중소 도시지역 강우유출수의 유출특성)

  • Lee, Hong-Shin;Lee, Seung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.193-202
    • /
    • 2009
  • This study was conducted to identify the magnitude of first flush in small city urban area and to provide the basic information on the criteria of stormwater runoff management. Monitoring site was surrounded by residential area in Gumi city near to national industrial complex and the monitoring period was three months. Total watershed area was 24.9 ha, where 80% of the area is impervious (asphalt of pavement type). Periodic monitoring of conventional water quality parameters were conducted with six times of rainfall period. Event mean and site mean concentrations for all the parameters were calculated based on the analytical results. Particle size distribution was 9.82 ${\mu}m$ for $D_{0.1}$, 38.99 ${\mu}m$ for $D_{0.5}$ and 159.61 ${\mu}m$ for $D_{0.9}$ respectively. First flush phenomenon was detected highly in particulate solids than dissolved ones. The first flush criteria results by mass first flush contained between 44.4% to 58.5% pollutant mass during the first 30% of runoff volume. Mass first flush ratio and particle size distribution obtained in this study are expected to provide the basic information for the design and operation of non-point source treatment facility.

Properties of SPE-Based Cement Grout for Semi-Rigid Pavements (Sulfur Polymer Emulsion을 활용한 반강성 포장용 시멘트 주입재의 특성)

  • Lee, Byung-Jae;Lee, Jun;Hyun, Jung-Hwan;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.57-65
    • /
    • 2013
  • The development of the oil refining industry has resulted in an annual 120 million tons of sulphur, which is a by-product of the desulphurization process. To exploit this abundance, the applications of sulphur must be expanded. as excellent durability of reuse of leftover sulphur which has high potential for utilization in construction materials, the study is actively in progress. Meanwhile, there has been active research on semi-rigid pavements that draw on the strengths and overcome the weaknesses of asphalt and concrete pavements. Acrylate is used to prevent cracking but involves a high cost, thus, an alternative material is required. As such, this study presents methods on the reuse of leftover sulphur and examines the engineering performance of grout containing sulfur polymer emulsion (SPE) for use in semi-rigid pavements. Our analysis shows that grout in which 30% of acrylate is replaced with SPE has superior properties in terms of time of flow and strength compared to regular grout. However, performance declined when more than 50% of acrylate was replaced by SPE, indicating that the optimum replacement level is 30%. Through SEM analysis, we found that grout with utra harding cement in this study at three hours had similar hydration properties to that of Type 1 Ordinary Portland Cement (OPC) at seven days, and maintained the properties regardless of grout containing SPE. OPC and grout with a replacement level of 30% displayed similar levels of chloride invasion resistance, whereas grout without SPE was far less resistant. Within the scope of this paper, the optimum replacement level of acrylate with SPE was found to be 30% in consideration of various properties such as time of flow, strength, and chloride invasion resistance.

Acid Drainage and Damage Reduction Strategy in Construction Site: An Introduction (건설현장 산성배수의 발생현황 및 피해저감대책)

  • Kim, Jae-Gon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.651-660
    • /
    • 2007
  • Acid drainage has been recognized as an environmental concern in abandoned mine sites for long time. Recently, the environmental and structural damage by acid drainage is a current issue in construction sites in Korea. Here, the author introduces the type of damages by acid drainage in construction sites and emphasizes the importance of geoscience discipline in solving the problem. Metasedimentary rock of Okcheon group, coal bed of Pyeongan group, Mesozoic volcanic rock. and Tertiary sedimentary and volcanic rocks are the major rock types with a high potential for acid drainage upon excavation in Korea. The acid drainage causes the acidification and heavy metal contamination of soil, surface water and groundwater, the reduction of slope stability, the corrosion of slope structure, the damage on plant growth, the damage on landscape and the deterioration of concrete and asphalt pavement. The countermeasure for acid drainage is the treatment of acid drainage and the prevention of acid drainage. The treatment of acid drainage can be classified into active and passive treatments depending on the degree of natural process in the treatment. Removal of oxidants, reduction of oxidant generation and encapsulation of sulfide are employed for the prevention of acid drainage generation.

Scenario-Based Analysis on the Effects of Green Areas on the Improvement of Urban Thermal Environment (녹지 조성 시나리오에 따른 도시 열환경 개선 효과 분석)

  • Min, Jin-Kyu;Eum, Jeong-Hee;Sung, Uk-Je;Son, Jeong-Min;Kim, Ju-Eun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.1-14
    • /
    • 2022
  • To alleviate the urban heat island phenomenon, this study aims to quantitatively analyze the effects of neighborhood green spaces on the improvement of the thermal environment based on detailed scenarios of five types of green spaces, including parks, pocket parks, parking lot greening, roadside planting, and rooftop-wall greening. The ENVI-met 4.4.6v model, a microclimate simulation program, was used to analyze the effects of green spaces. As a result, it was found that the air temperature decreased as the planting density of the park increased, but the thermal comfort index PET, which is the degree of heat sensation felt by humans, was not directly proportional to temperature. The establishment of a pocket park reduced air temperature up to a radius of 56m, while the range of temperature reduction increased by about 12.5% when three additional pocket parks were established at 250m intervals. Unlike the air temperature, PET was only affected in the vicinity of the planted area, so there was no significant difference in the thermal comfort of the surrounding environment due to the construction of pocket parks. Changing the surface pavement from asphalt to lawn blocks and implementing rooftop or wall greening did not directly act as solar shading but positively affected air temperature reduction; PET showed no significant difference. Roadside planting showed a higher air temperature reduction effect as the planting interval was narrower, but PET was not directly proportional to tree density. In the case of shrub planting under trees, it did not significantly affect the air temperature reduction but positively affected the improvement of thermal comfort. This study can outline strategies for constructing neighborhood green spaces to solve the urban heat island phenomena and establish detailed strategies for efficient thermal environment improvements.