• Title/Summary/Keyword: Asphalt ballasted track

Search Result 5, Processing Time 0.017 seconds

Behavior Characteristics of Ballasted Track on Asphalt Roadbed Using Real Scale Test (실대형 실험을 통한 아스팔트 노반상 자갈궤도의 거동 특성)

  • Lee, Seonghyeok;Lee, Jinwook;Lee, Hyunmin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • Ballasted track on an asphalt roadbed can be beneficial for its various effects such as (i) decreasing of roadbed thickness by dispersing train load; (ii) prevention of both strength reduction and weakening in roadbed system by preventing rainwater penetration; and (iii) reducing maintenance cost by preventing roadbed mud-pumping and frostbite. With these beneficial effects, ballasted track on asphalt roadbed has been widely used in Europe and Japan, and relevant research for applying such ballasted track on asphalt roadbed systems in Korea is ongoing. In this study, full-scale static and dynamic train load tests were performed to compare the performance of ballasted track on asphalt roadbed and ballasted track. The optimum thickness levels of asphalt and reinforced roadbeds, corresponding to the design criteria for reinforced roadbed of high-speed railway, was estimated using the FEM program ABAQUS. Test results show that the earth pressure on reinforced roadbed of ballasted track on the asphalt roadbed was relatively low compared with that of simple ballasted track. The elastic and plastic displacements of simple ballasted track on the asphalt roadbed were also lower than those of ballasted track. These test results may indicate that the use of ballasted track on asphalt roadbed is an advantageous system in view of long-term maintenance.

Parametric Study on Geogrid-Reinforced Track Substructure

  • Oh, Jeongho
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.59-63
    • /
    • 2013
  • The purpose of this paper was to evaluate the effectiveness of geogrid for conventional ballasted track and asphalt concrete underlayment track using PLAXIS finite element program. Geogrid element was modeled at various locations that include subballast/subgrade, subballast/ballast interfaces, middle of the ballast, and one-third depth of the ballast. The results revealed that the effectiveness of geogrid reinforcement appeared to be larger for ballasted track structure compared to asphalt concrete underlayment track. Particularly, in case of installing geogrid at one-third depth of ballast layer in a conventional ballasted track, the most effectiveness of geogrid reinforcement was achieved. The influence of geogrid axial stiffness on track substructure response was not clear to conclude. Further validations using a discrete element method along with experimental investigation are considered as a future study. The effect of asphalt concrete layer modulus was evaluated. The results exhibited that higher layer modulus seems to be effective in controlling displacement and strain of track substructure. However it also yields slightly higher stresses within track substructure. It infers that further validations are required to come up with optimum asphalt concrete mixture design to meet economical and functional criteria.

Optimal Section of Ballasted Asphalt Track Considering Design Lifetime and Economic Feasibility (설계수명 및 경제성을 고려한 유도상 아스팔트 궤도의 최적 단면 산정)

  • Lee, Seonghyeok;Lee, Jinwook;Lee, Hyunmin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.241-251
    • /
    • 2015
  • Compared with ballasted track (BT), ballasted asphalt track (BAT) has been increasingly adopted in many countries due to its more greatly reduced reinforced roadbed thickness and smaller cumulative plastic deformation, and its advantages in terms of maintenance. In this respect, the authors' previous research includes analysis of BAT sections that show performance similar to that of BT sections of the present specifications; reliability verification of the analysis results through real-sized static and dynamic train-load tests were performed. Based on previous research, this paper estimates the track lifetime using the strain of the lower roadbed according to reinforced roadbed thickness; using probabilistic LCC analysis, this paper presents a BAT section that satisfies the design lifetime and that has performance similar to or higher than that of BT.

Analysis of Permanent Deformations in Asphalt Mixtures for Design of Asphalt Trackbed Foundation (철도 노반 설계를 위한 아스팔트 혼합물의 영구변형 특성 분석)

  • Lim, Yujin;Lee, JinWook;Lee, SeongHyeok;Lee, ByeongSik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.123-132
    • /
    • 2014
  • In this study, permanent deformation of asphalt trackbed was investigated by performing repetitive load test on specimen made with dense graded asphalt mixture that was specially prepared for asphalt trackbed foundation. The obtained test results were compared with those computed from the prediction model proposed by AASHTO 2002, called MEPDG. No prediction model adaptable only for permanent deformation of the asphalt trackbed foundation has yet been developed, so the prediction model by AASHTO was adapted in this study to simulate permanent deformation of trackbed foundations in asphalt slab track and in ballasted asphalt track. In order to simulate permanent deformation, a finite element analysis was performed to obtain stresses generated in trackbed due to wheel load. It was found that the predicted permanent deformation was much smaller than the anticipated deformation and that the asphalt track could be stable during the service life of the structure.

Design Graphs for Asphalt Concrete Track with Wide Sleepers Using Performance Parameters (성능요소를 반영한 광폭 침목형 아스팔트콘크리트 궤도 설계그래프)

  • Lee, SeongHyeok;Lim, Yujin;Song, Geunwoo;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.331-340
    • /
    • 2016
  • Wheel load, design velocity, traffic amount (MGT), stiffness and thickness of sub-layers of asphalt concrete track are selected as performance design parameters in this study. A pseudo-static wheel load computed considering the dynamic amplification factor (DAF) based on the design velocity of the KTX was applied to the top of asphalt concrete track for full three dimensional structural analysis using the ABAQUS program. Tensile strains at the bottom of the asphalt concrete layer and vertical strains at the top of the subgrade were computed from the structural FEA with different combinations of performance parameter values for one asphalt concrete track section. Utilizing the computed structural analysis results such as the tensile strains and the vertical strains, it was possible to develop design graphs to investigate proper track sections for different combination of the performance parameters including wheel load, design velocity, traffic amount(MGT), stiffness and thickness of asphalt concrete layers for any given design life. By analyzing the proposed design graphs for asphalt concrete track, it was possible to propose simple design tables that can be used by engineers for the effective and fast design of track.