• 제목/요약/키워드: Aspect ratios

검색결과 585건 처리시간 0.032초

Size and Aspect Ratio Effects on the Magnetic Properties of a Spin-Valve Multilayer by Computer Simulation

  • Lim, S.H.;Han, S.H.;Shin, K.H.;Kim, H.J.
    • Journal of Magnetics
    • /
    • 제5권3호
    • /
    • pp.90-98
    • /
    • 2000
  • The change in the magnetic properties of a spin-valve multilayer with the structure IrMn (9 m)/CoFe (4 nm)/Cu (2.6 nm)/CoFe (2 nm)/NiEe (6 nm) is investigated as a function of the size and the aspect ratio. At a fixed aspect ratio (the length/width ratio) of 2, the magnetostatic interactions begin to affect the magnetic properties substantially at a spin-valve length of 5 $\mum$, and, at a length of 1 $\mum$, they become even more dominant. In the case of a fixed multilayer size (2.4 $\mum$) which is indicated by the sum of the length and the width, magnetization change occurs by continuous spin-reversal and M-H loops are characterized by no or very small hysteresis at aspect ratios smaller than unity, At aspect ratios greater than unity, magnetization change occurs by spin-flip resulting in squared hysteresis loops. A very large changes in the coercivity and the bias field is observed, and these results are explained by two separate contributions to the total magnetostatic interactions: the coercivity by the self-demagnetizing field and the bias field by the interlayer magnetostatic interaction field.

  • PDF

Statistical methods of investigation on the compressive strength of high-performance steel fiber reinforced concrete

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • 제9권2호
    • /
    • pp.153-169
    • /
    • 2012
  • The contribution of steel fibers on the 28-day compressive strength of high-performance steel fiber reinforced concrete was investigated, is presented. An extensive experimentation was carried out over water-cementitious materials (w/cm) ratios ranging from 0.25 to 0.40, with silica fume-cementitious materials ratios from 0.05 to 0.15, and fiber volume fractions ($V_f$= 0.0, 0.5, 1.0 and 1.5%) with the aspect ratios of 80 and 53. Based on the test results of 44 concrete mixes, mathematical model was developed using statistical methods to quantify the effect of fiber content on compressive strength of HPSFRC in terms of fiber reinforcing index. The expression, being developed with strength ratios and not with absolute values of strengths, is independent of specimen parameters and is applicable to wide range of w/cm ratios, and used in the mix design of steel fiber reinforced concrete. The estimated strengths are within ${\pm}3.2%$ of the actual values. The model was tested for the strength results of 14 mixes having fiber aspect ratio of 53. On examining the validity of the proposed model, there exists a good correlation between the predicted values and the experimental values of different researchers. Equation is also proposed for the size effect of the concrete specimens.

Numerical and wind tunnel simulation of pollutant dispersion in the near wake of buildings

  • Wang, X.;McNamara, K.F.
    • Wind and Structures
    • /
    • 제8권6호
    • /
    • pp.427-442
    • /
    • 2005
  • Numerical and wind tunnel simulations of pollutant dispersion around rectangular obstacles with five aspect ratios have been conducted in order to identify the effects of flow patterns induced by buildings on plume dispersion in the near wake of buildings. An emission from a low source located upwind of obstacles was used in this simulation. The local flow patterns and concentrations around a cubical obstacle were initially investigated using three RANS turbulence models, (the standard $k-{\varepsilon}$, Shear Stress Transport (SST), Reynolds-Stress RSM turbulence model) and also using Large-eddy simulation (LES). The computed concentrations were compared with those measured in the wind tunnel. Among the three turbulence models, the SST model offered the best performance and thus was used in further investigations. The results show, for normal aspect ratios of width to height, that concentrations in the near wake are appreciably affected because of plume capture by the horseshoe vortex and convection by the vertical vortex pairs. These effects are less important for high aspect ratios. Vertical vortex pairs present a strong ability to exchange mass vertically and acts efficiently to reduce ground-level concentrations in the near wake.

쐐기형 단락요철이 설치된 덕트의 종횡비가 열/물질 전달에 미치는 영향 (Effects of Duct Aspect Ratios on Heat/Mass Transfer With Discrete V-Shaped Ribs)

  • 이동현;이동호;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1453-1460
    • /
    • 2003
  • The present study investigates the effects of rib arrangements and aspect ratios of a rectangular duct simulating the cooling passage of a gas turbine blade. Two different V-shaped rib configurations are tested with the aspect ratios (W/H) of 3 to 6.82. One is the continuous V-shaped rib configuration with $60^{\circ}$ attack angle, and the other is the discrete V-shaped rib configuration with $45^{\circ}$ attack angle. The square ribs with the pitch to height ratio of 10.0 are installed on the test section in a parallel arrangement for both rib configurations. Reynolds numbers based on the hydraulic diameter are changed from 10,000 to 30,000. A naphthalene sublimation method is used to measure local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices are generated in a duct, and high transfer region is formed at the center of the ribbed walls of the duct. However, for the discrete V-shaped rib configuration with $45^{\circ}$ attack angle, complex secondary flow patterns are generated in the duct due to its geometric feature, and more uniform heat/mass transfer distributions are obtained for all tested cases

  • PDF

덕트 종횡비가 회전덕트 내 압력강하에 미치는 영향 (Effect of Duct Aspect Ratios on Pressure Drop in a Rotating Two-Pass Duct)

  • 김경민;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.505-513
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. Three ducts of different aspect ratios (W/H=0.5, 1.0 and 2.0) are employed with a fixed hydraulic diameter ($D_h$) of 26.7 mm. $90^{\circ}$-rib turbulators with $1.5mm{\times}1.5mm$ cross-section are attached on the leading and trailing surfaces. The pitch-to-rib height ratio (p/e) is 1.0. The distance between the tip of the divider and the outer wall of the duct is 1.0 W. The thickness of divider wall is 6.0 mm o. 0.225 $D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 and the .elation number (Ro) is varied from 0.0 to 0.2. As duct aspect ratio increases, high friction factor ratios show in overall regions. The reason is that the rib height-to-duct height ratio (e/H) increases, but the divider wall thickness-to-duct width ($t_d/W$) decreases. The rotation of duct produces pressure drop discrepancy between the leading and trailing surfaces. However, the pressure drop discrepancy of the high duct aspect ratio (AR=2.0) is smaller than that of the low duct aspect ratio (AR=0.5) due to the decrement of duct hight (H).

Detached eddy simulation of flow around rectangular bodies with different aspect ratios

  • Lim, Hee Chang;Ohba, Masaaki
    • Wind and Structures
    • /
    • 제20권1호
    • /
    • pp.37-58
    • /
    • 2015
  • As wind flows around a sharp-edged body, the resulting separated flow becomes complicated, with multiple separations and reattachments as well as vortex recirculation. This widespread and unpredictable phenomenon has long been studied academically as well as in engineering applications. In this study, the flow characteristics around rectangular prisms with five different aspect ratios were determined through wind tunnel experiments and a detached eddy simulation, that placed the objects in a simulated deep turbulent boundary layer at $Re=4.6{\times}10^4$. A series of rectangular prisms with the same height (h = 80 mm), different longitudinal lengths (l = 0.5h, h, and 2h), or different transverse widths (w = 0.5h, h, and 2h) were employed to observe the effects of the aspect ratio. Furthermore, five wind directions ($0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $45^{\circ}$) were selected to observe the effects of the wind direction. The simulated results of the surface pressure were compared to the wind tunnel experiment results and the existing results of previous papers. The vortex and spectrum were also analyzed to determine the detailed flow structure around the body. The paper also highlights the pressure distribution around the rectangular prisms with respect to the different aspect ratios. With an increasing transverse width, the surface suction pressure on the top and side surfaces becomes stronger. In addition, depending on the wind direction, the pressure coefficient experiences a large variation and can even change from a negative to a positive value on the side surface of the cube model.

다양한 영각을 갖는 2차원 장방형 각주의 공력특성에 관한 연구 (A Study on Aerodynamic Properties of Two-Dimensional Rectangular Prism in Various Angles of Attack)

  • 송근택;김유택;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.485-492
    • /
    • 2002
  • The present study is aimed to reveal macroscopic aerodynamic characteristics of two-dimensional rectangular prisms with three aspect ratios(D/H=1, 2 and 3) and six angles of attack($0^{circ}, 10^{circ}, 13.5^{circ}, 20^{circ}, 30^{circ} and 45^{\circ}$). The Reynolds number is fixed as $1\times10^4$. The SOLA-based revised finite difference method for the conservation form on irregular grid was adopted as a new numerical method. Instantaneous flow patterns at $45^{\circ}$ in case of D/H=2 and D/H=3 show larger asymmetric wake development which is closely related to the sharp decrease of drag coefficients at higher angles of attack range. Vorticity propagation into enlarged wake region is conjectured to be responsible for this phenomenon. The Strouhal number is found to be sensitive to the angle of attack at higher aspect ratios(D/H=2 and 3).

형상비가 다른 T형벽체의 유효폭 산정을 위한 비선형 FEM 해석 (A Study on Nonlinear FEM Analysis for the Effective Widths of T-shaped Structural Walls with Different Aspect Ratios)

  • 조남선;하상수;오영훈;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.67-74
    • /
    • 2001
  • In domestic, irregular walls such as T, L, H and Box shapes are considered as rectangular wall in the design of bearing wall apartment building. The strengths of walls, therefore, can be underestimated in case of using the current design process. Irregular walls are connected to each other as rigid joint so that part of the load can be resisted by the wall perpendicular to the load direction. This resistance can be caused by the effective width of perpendicular wall. This additional resistance by the perpendicular wall increases the strength of structural walls. The objective of this study is to evaluate the effective widths of flanged walls with different aspect ratios by using FEM analyses. the results from finite element method are compared with effective flange widths of some code provisions.

  • PDF

벽체와 기둥의 강성비와 형상비에 따른 지하외벽의 최대부재력 산정 (Estimation of Maximum Member Force in Basement Wall according to Stiffness and Aspect Ratios of Wall and Column)

  • Young-Chan Kim;Dong-Gun Kim
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.118-122
    • /
    • 2002
  • 토압 및 수압을 받는 지하외벽의 거동을 파악하기 위하여 유한요소를 이용한 수치적 연구를 수행하였다. 지하외벽의 구조설계는 판의 경계조건을 가정하여 이루어지는데 이 가정으로 인하여 잘못된 결과를 초래할 수 있다. 본 연구에서는 벽체와 기둥의 강성비와 형상비에 따른 모멘트와 전단력의 변화에 대한 변수해석을 수행하였다. 지하외벽의 설계에 적용할 수 있는 수정계수와 설계에의 적용예를 제시하였다.

피로하중을 받는 강섬유보강콘크리트의 인장변형에 관한 연구 (Tensile Strain of Steel Fiber Reinforced Concrete under Fatigue Load)

  • 장동일;채원규;박철우;민인기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.82-87
    • /
    • 1992
  • In this thesis, the fatigue tests were performed on a series of SFRC (steel fiber reinforced concrete)to investigate the flexural tensile behavior of SFRC varying with the steel fiber contents and the steel fiber aspect ratios. Beam specimens of 10$\times$10$\times$60cm are used. the specimen series are classified according to the steel fiber contents varying 0.5. 1.0, 1.5%, and to the steel fiber aspect ratios varying 60, 80, 100. The three point loading system was used in the fatigue tests. The minimum value of repeated loading was fixed at 10.0kgf and maximum value was 75% to static ultimate strength for periodically using concrete strain gages located at the lower end of the mid-span, and the stress-strain curves were drawn for each specimens, respectively. From the tests result, it was found that the larger steel fiber content and the smaller the steel fiber aspect ratio is , the tensile strain of SFRC under fatigue load proportionally increases. By the regression analysis on these results, the empirical formulae to predict the tensile strain of SFRC were suggested. In comparison of the tensile elastic modulus under fatigue load, it was also found that the larger steel fiber content and the smaller steel fiber aspect ratio is , the smaller decreasing rate of the stiffness of SFRC under fatigue load decreased.

  • PDF