• Title/Summary/Keyword: Aspect Ratio Effect

Search Result 757, Processing Time 0.023 seconds

Consideration on Frictional Laws and their Effect on Finite Element Solutions in Bulk Metal Forming (체적소성가공에서 마찰법칙이 유한요소해석 결과에 미치는 영향에 관한 고찰)

  • Joun, M.S.;Moon, H.K.;Hwang, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.102-109
    • /
    • 1996
  • Effects of frictional laws on finite element solutions in metal forming were investigated in this paper. A rigid-viscoplastic finite element formulation was given with emphasis on the frictional laws. The Coulomb friction and the constant shear friction laws were compared through finite element analyses of compression of rings and cylinders with different aspect ratios, ring-gear forging, multi-stage cold extrusion and hot strip rolling under the isothermal condition. It has been shown that two laws may yield quite different results when the aspect ratio of a process and the fractional contact region are large.

  • PDF

Shape factor sγ for shallow footings

  • Puzakov, Viktor;Drescher, Andrew;Michalowski, Radoslaw L.
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • The results of FLAC3D-based numerical evaluation of the bearing capacity shape factor $s_{\gamma}$ are presented for square and rectangular footings on granular soils. The results confirm a peculiar effect found earlier by Zhu and Michalowski (2005), where for large values of internal friction angle, $s_{\gamma}$ exhibits a peak at some aspect ratio of the footing, and then decreases towards unity at large aspect ratios. The Zhu and Michalowski's results were derived using the finite element program ABAQUS, and the results presented in this note corroborate their earlier findings.

Size dependent dynamic bending nonlocal response of armchair and chiral SWCNTs based on Flügge model

  • Hussain, Muzamal
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.451-459
    • /
    • 2022
  • In present study, the nonlocal Flügge shell model based is utilized to investigate the vibration characteristics of armchair and chiral single-walled carbon nanotubes with impact of small-scale effect subjected to two boundary supports. The wave propagation approach is employed to determine eigen frequencies for armchair and chiral tubes. The fundamental frequencies scrutinized with assorted aspect ratios by varying the bending rigidity. The raised in value of nonlocal parameter reduces the corresponding fundamental frequency. It is investigated with higher aspect ratio, the boundary conditions have a momentous influence on vibration of CNT. It is concluded that frequencies would increase by increasing of the bending rigidity. Solutions of the frequency equation have determined by writing in MATLAB coding.

Design of the Vacuum Vessel for the KT-2 Project

  • S.R.In;Yoon, B.J.;S.H.Jeong;Lee, B.S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.438-442
    • /
    • 1996
  • The design of the vacuum vessel of KT-2(a large-aspect-ratio, mid-size tokamak) is presented. The KT-2 vacuum vessel provides necessary environments to contain a plasma of double-null configuration with elongation of up to 1.8. The vacuum vessel is designed as an all-metal welded structure. Eddy currents are induced on the vessel during all stages of the plasma operation. Influences of the continuous vessel on the plasma were investigated. No significant effect of the vessel on the plasma in every aspect of null formation, plasma initiation, plasma control was found. Stresses and deformations in the vessel by atmospheric pressure and electromagnetic forces due to the eddy currents were calculated using 3D FEM code.

  • PDF

PROBABILISTIC LANDSLIDE SUSCEPTIBILITY AND FACTOR EFFECT ANALYSIS

  • LEE SARO;AB TALIB JASMI
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.306-309
    • /
    • 2004
  • The susceptibility of landslides and the effect of landslide-related factors at Penang in Malaysia using the Geographic Information System (GIS) and remote sensing data have been evaluated. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land use from Landsat TM (Thermatic Mapper) satellite images; and the vegetation index value from SPOT HRV (High Resolution Visible) satellite images. Landslide hazardous areas were analysed and mapped using the landslide-occurrence factors employing the probability-frequency ratio method. To assess the effect of these factors, each factor was excluded from the analysis, and its effect verified using the landslide location data. As a result, land 'cover had relatively positive effects, and lithology had relatively negative effects on the landslide susceptibility maps in the study area. In addition, the landslide susceptibility maps using the all factors showed the relatively good results.

  • PDF

Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.27-56
    • /
    • 2020
  • In this paper, the deflection and buckling analyses of porous nano-composite piezoelectric plate reinforced by carbon nanotube (CNT) are studied. The equations of equilibrium using energy method are derived from principle of minimum total potential energy. In the research, the non-local strain gradient theory is employed to consider size dependent effect for porous nanocomposite piezoelectric plate. The effects of material length scale parameter, Eringen's nonlocal parameter, porosity coefficient and aspect ratio on the deflection and critical buckling load are investigated. The results indicate that the effect of porosity coefficient on the increase of the deflection and critical buckling load is greatly higher than the other parameters effect, and size effect including nonlocal parameter and the material length scale parameter have a lower effect on the deflection increase with respect to the porosity coefficient, respectively and vice versa for critical buckling load. Porous nanocomposites are used in various engineering fields such as aerospace, medical industries and water refinery.

PVA Technology for High Performance LCD Monitors

  • Kim, Kyung-Hyun;Song, Jang-Geun;Park, Seung-Bam;Lyu, Jae-Jin;Souk, Jun-Hyung;Lee, Khe-Hyun
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.3-8
    • /
    • 2000
  • We have developed a high performance vertical alignment TFT-LCD (Thin Film Transistor Liquid Crystal Display), that shows a high light transmittance, and wide viewing angle characteristics with an unusually high contrast ratio. In order to optimize the electro-optical properties we have studied the effect of cell parameters, multi-domain structure and retardation film compensation. With the optimized cell parameters and process conditions, we have achieved a 24" wide UXGA TFTLCD monitor (16:10 aspect ratio 1920X1200) showing a contrast ratio of over 500:1, panel transmittance near 4.5%, response time near 25 ms, and viewing angle higher than 80 degree in all directions.

  • PDF

Effect of Process Parameters on Surface Roughness and Porosity of Direct Laser Melted Bead (DLM 공정시 공정변수에 따른 내부공극률과 표면조도 변화)

  • Kim, T.H.;Jang, J.H.;Jeon, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.575-580
    • /
    • 2011
  • Direct laser melting(DLM) is promising as a joining method for producing parts for automobiles, aerospace, marine and medical applications. An advantageous characteristic of DLM is that it affects the parent metal very little. The mechanical properties of parts made by DLM are strongly affected by the porosity and surface roughness of the laser melted beads. This is a systematic study of the effects of the porosity and surface roughness of laser melted beads using various processing parameters, such as laser power, scan rate and overlapping ratio of the fill spacing. The specimens were fabricated with 316L and 304L austenitic stainless steel powder. Dense parts with low porosity were obtained at low laser scan speed, as it increased the aspect ratio of the parental material and the depth of penetration. The variations of surface roughness were examined at various processing parameters such as overlapping ratio and laser power.

Buckling analysis of arbitrary two-directional functionally graded nano-plate based on nonlocal elasticity theory using generalized differential quadrature method

  • Emadi, Maryam;Nejad, Mohammad Zamani;Ziaee, Sima;Hadi, Amin
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.565-581
    • /
    • 2021
  • In this paper the buckling analysis of the nanoplate made of arbitrary bi-directional functionally graded (BDFG) materials with small scale effects are investigated. To study the small-scale effects on buckling load, the Eringen's nonlocal theory is applied. Employing the principle of minimum potential energy, the governing equations are obtained. Generalize differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the buckling load of BDFG nanoplates. These models can degenerate into the classical models if the material length scale parameter is taken to be zero. Comparison between the results of GDQ method and other papers for buckling analysis of a simply supported rectangular nano FGM plate reveals the accuracy of GDQ method. At the end some numerical results are presented to study the effects of material length scale parameter, plate thickness, aspect ratio, Poisson's ratio boundary condition and side to thickness ratio on size dependent Frequency.

Effect of Tip Size and Aspect Ratio on Reforming Performance in a Methane Reformer for Polymer Electrolyte Membrane Fuel Cell (PEMFC) (고분자 전해질 막 연료전지를 위한 메탄 개질기에서 형상 변화가 개질 성능에 미치는 영향에 대한 연구)

  • Seo, Dong-Kyun;Noh, In-Kyu;Hwang, Jung-Ho;Choi, Jong-Kyun;Shin, Dong-Hoon;Kim, Hyung-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.364-374
    • /
    • 2010
  • Design of a reformer consisting of combustion chamber and reforming chamber was investigated for a 1 kW and a 5 kW polymer electrolyte membrane fuel cell (PEMFC), respectively, using the computational fluid dynamics (CFD). First, the 1kW reformer was considered to obtain the reliability of the numerical study. It was modeled, calculated and compared with experimental data. Second, the 5kW reformer was considered for a geometric study. Three tip sizes (35, 40, and 45 mm) and five aspect ratios was selected. It was found that the optimum was at tip sizes of 40 and 45 mm, at aspect ratios of -10% and -20% of the standard length.