• Title/Summary/Keyword: Aspartate aminotransferase(AspAT)

Search Result 6, Processing Time 0.016 seconds

Enzymatic Synthesis of L-tert-Leucine with Branched Chain Aminotransferase

  • Seo, Young-Man;Yun, Hyung-Don
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1049-1052
    • /
    • 2011
  • In this study, we demonstrated the asymmetric synthesis of L-tert-leucine from trimethylpyruvate using branched-chain aminotransferase (BCAT) from Escherichia coli in the presence of L-glutamate as an amino donor. Since BCAT was severely inhibited by 2-ketoglutarate, in order to overcome this here, we developed a BCAT/aspartate aminotransferase (AspAT) and BCAT/AspAT/pyruvate decarboxylase (PDC) coupling reaction. In the BCAT/AspAT/PDC coupling reaction, 89.2 mM L-tert-leucine (ee>99%) was asymmetrically synthesized from 100 mM trimethylpyruvate.

Cloning and Biochemical Characterization of Aspartate Aminotransferase from Xanthomonas oryzae pv. oryzae (Xanthomonas oryzae pv. oryzae로 부터 aspartate aminotransferase 유전자의 분리 및 생화학 특성)

  • Kang, Han-Chul;Yoon, Sang-Hong;Lee, Chang-Mook
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.3
    • /
    • pp.109-115
    • /
    • 2009
  • The gene encoding a putative aspartate aminotransferase in Xanthomonas oryzae pv. oryzae (Xoo) was cloned using PCR technique. The gene was ligated with pET-21(a) vector containing His6 tag and expressed in E. coli BL21(DE3). Affinity purification of the recombinant aspartate aminotransferase with Ni-NTA resin resulted in one band by SDS-PAGE analysis. The purified enzyme showed a molecular weight of 43 kDa, as expected. The enzyme was the most active toward L-aspartate as an amino donor, indicating that the purified enzyme is one of aspartate aminotrans-ferases exist in Xoo. Optimal activity of the enzyme was observed at around pH 7.5 and stability was much higher at alkaline pH rather than acidic pH values. The enzyme was considerably activated by the presence of manganese ion, showing about 157% of control activity at 1.0 mM.

Overexpression of Termostable Bacillus sp. in Recombinant E.coli (재조합 E.coli에서 고온성 Bacillus 균주의 과발현에 관한 연구)

  • 서화정;이인선
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.1
    • /
    • pp.51-54
    • /
    • 2000
  • In the 5'-flanking region of the D-AAT, AspAT and AlaDH gene, I found three or two pairs of sequences(designated as Pl, P2, P3) which show significant similarity to the E.coli consensus sequences of -35 and -10 for promoters. The spacing between -35 and -10 is 16 to 18bp in all the three putative promoters Pl, P2 and P3 which is in good agreement with the preferred spacer length in E.coli and in B.subtilis. Therefore, the putative promoters may also function to increase the efficiency of transcriptional initiation. The most stable, double-helical“Shine-Dalgarno”pairing is formed with a free energy change(ΔG) of -13.0 kcal/mol, -9.6 kcal/mol, -15.8 kcal/mol.

  • PDF

Effects of Various Light Spectra on Physiological Stress and DNA Damage by Thermal Stress in Juvenile Rock Bream (Oplegnathus fasciatus)

  • Choe, Jong Ryeol;Shin, Yoon Sub;Choi, Ji Yong;Kim, Tae Hwan;Kim, Daehee;Choi, Cheol Young
    • Ocean and Polar Research
    • /
    • v.39 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • In this study, we investigated the effects of light spectra on physiology stress and DNA damage in juvenile rock bream (Oplegnathus fasciatus) using light-emitting diodes (LEDs; green, 520 nm; red, 630 nm) at two intensities (0.25 and $0.5W/m^2$ ) with application of thermal stress (25 and $30^{\circ}C$). We measured the mRNA expression of heat shock protein 70 (HSP70) and the levels of plasma cortisol, glucose, aspartate aminotransferase (AspAT), and alanine aminotransferase (AlaAT). Additionally, DNA damage was measured using comet assays. Our findings showed that HSP70 mRNA expression and plasma cortisol, glucose, AspAT, and AlaAT levels were significantly higher after exposure to high temperatures and were significantly lower after exposure to green LED light. Thus, although high water temperatures induced stress in juvenile rock bream, green LED light inhibited stress. In particular, green LED light reduced stress and DNA damage to a greater degree than other light sources.

Antioxidant Defenses and Physiological Changes in Olive Flounder (Paralichthys olivaceus) in Response to Oxidative Stress Induced by Elevated Water Temperature (고수온 환경에 의해 유도된 산화 스트레스에 대한 넙치의 항산화 작용과 생리적 변화)

  • Shin, Hyun-Suk;An, Kwang-Wook;Kim, Na-Na;Choi, Cheol-Young
    • Korean Journal of Ichthyology
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • We determined oxidative stress caused by thermal stress in olive flounder Paralichthys olivaceus based on the altered-mRNA expression and enzymatic activity of two key antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), along with monitoring of several other biomarkers. When the fish were exposed to acute thermal change (from $20^{\circ}C$ to $25^{\circ}C$ and $30^{\circ}C$), the expression and activity of both enzymes were significantly higher at elevated temperatures ($25^{\circ}C$ and $30^{\circ}C$) than at $20^{\circ}C$. Lipid peroxidation (LPO) was also higher at $25^{\circ}C$ and $30^{\circ}C$ than at $20^{\circ}C$. In addition, the plasma $H_2O_2$ concentration was significantly increased by thermal stress. Furthermore, we investigated changes due to thermal stress by measuring levels of plasma alanine aminotransferase (AlaAT) and aspartate aminotrasferase (AspAT). Both were significantly increased by thermal stress. As an immune indicator, the lysozyme concentration was lower at $30^{\circ}C$ than at $20^{\circ}C$, indicating that thermal stress decreases immune function. Therefore, thermal stress could induce oxidative stress and suppress immune function and can cause physiological stress.

Cytokinin and Nitrogen-Mediated Gene Regulation for $C_4$ Photosynthesis

  • Sugiyama, Tatsuo;Takei, Kentaroch;Deji, Atsushi;Tanguichi, Mitsutaka;Sakakibara, Hitoshi
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.50-63
    • /
    • 1996
  • Nitrogen (N) is an important regulator of the expression of genes involved in carbon and N assimilation pathways in plants by selectively altering the levels of proteins and/or mRNAs. These in C4 plants include genes for such as phosphoenolpyruvate carboxylase, carbonic anhydrase, and pyruvate-Pi dikinase. The C4 genes are regulated in mesophyll cells by N availability both transcriptionally and posttranscriptionally through cytokinins and glutamine as signals. The level of both the signals is up-regulated by N availability: cytokinins in roots and glutamine in leaves. The level of glutamine is controlled by the differential expression by N of glutamine synthetase and ferrdoxin-dependent glutamate synthase genes which locate in the mesophyll cells of C4 plants. The results is discussed as molecular mechanism for the greater N use efficiency of the plants as well as N partitioning is the photosynthetic cells.

  • PDF