• Title/Summary/Keyword: Asparagus cochinchinesis

Search Result 4, Processing Time 0.02 seconds

Inhibitory Effects of Asparagus cochinchinensis in LPS-Stimulated BV-2 Microglial Cells through Regulation of Neuroinflammatory Mediators, the MAP Kinase Pathway, and the Cell Cycle (Lipopolysaccharide로 자극된 BV-2 미세교세포에서 신경염증 매개체, MAP kinase경로, 세포주기의 조절에 의한 천문동(Asparagus cochinchinensis)의 저해효과)

  • Lee, Hyun Ah;Kim, Ji Eun;Choi, Jun Young;Sung, Ji Eun;Youn, Woo Bin;Son, Hong Joo;Lee, Hee Seob;Kang, Hyun-Gu;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.331-342
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells can be considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Asparagus cochinchinensis has traditionally been used as a medicine to treat fever, cough, kidney disease, breast cancer, inflammatory diseases, and brain diseases. In this study, we investigated the neuroprotective mechanism of an aqueous extract from A. cochinchinensis root (AEAC), particularly its anti-inflammatory effects on lipopolysaccharide (LPS)-activated BV-2 microglial cells. BV-2 cells were treated with four different concentrations of AEAC. No significant toxicity was detected in BV-2 cells treated with AEAC. Nitric oxide (NO), cyclooxygenase-2 (COX-2) mRNA, and inducible nitric oxide synthase (iNOS) mRNA levels were 21% lower in the AEAC+LPS group than in the Vehicle+LPS group. Lower proinflammatory (TNF-α and IL-1β) and anti-inflammatory cytokine (IL-6 and IL-10) levels were also detected in the AEAC+LPS group than in the Vehicle+LPS group, albeit at varying rates. Moreover, the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group compared to the Vehicle+LPS group, enhancement of the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group, while cell cycle arrest at the G2/M phase caused by LPS treatment was less severe in the AEAC+LPS group. The increase in reactive oxygen species (ROS) generation induced by LPS treatment was also lower in the AEAC-pretreated group than in the Vehicle+LPS group. This is the first study to show that AEAC exerts anti-neuroinflammatory activity against LPS stimulation by regulating the MAPK signaling pathway, the cell cycle, and ROS production.

In vitro Growth of Shoot Derived from Shoot Tip in Asparagus cochinchinensis (Lour.) Merr. (천문동 경정 유래 신초의 기내생장)

  • Choo, Byung-Kil;Kim, Dae-Hyang;Jeong, Ju-Ri;Lim, Ju-Rak;Park, Chun-Bong;Ko, Byoung-Seob;Ryu, Jeom-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.4
    • /
    • pp.138-140
    • /
    • 2005
  • This study was carried out to investigate the optimal conditions for efficient in vitro growth of Asparagus cochinchinensis (Lour.) Merr. shoot derived from shoot tip. Shoots were successfully cultured in MS medium. It was found that $23^{\circ}C{\sim}25^{\circ}C$ were suitable for shoot growth. The growth of shoot was greatly influenced by cytokinins. The shoots derived from shoot tip were well elongated on MS medium supplemented with BA and zeatin. In vitro shoots were very poor or no growing. Especially, 3.0 mg/l BA on MS medium was very effective in elongation of shoot. Root formation from in vitro growth of plant let was achieved on MS medium supplemented with 0.5 mg/l IBA. The results suggest that selection of plant growth regulator could be important factor to achieve an efficient in vitro growth.

Optimal Fermentation Conditions of Hyaluronidase Inhibition Activity on Asparagus cochinchinensis Merrill by Weissella cibaria

  • Kim, Minji;Kim, Won-Baek;Koo, Kyoung Yoon;Kim, Bo Ram;Kim, Doohyun;Lee, Seoyoun;Son, Hong Joo;Hwang, Dae Youn;Kim, Dong Seob;Lee, Chung Yeoul;Lee, Heeseob
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.701-708
    • /
    • 2017
  • This study was conducted to evaluate the hyaluronidase (HAase) inhibition activity of Asparagus cochinchinesis (AC) extracts following fermentation by Weissella cibaria through response surface methodology. To optimize the HAase inhibition activity, a central composite design was introduced based on four variables: the concentration of AC extract ($X_1$: 1-5%), amount of starter culture ($X_2$: 1-5%), pH ($X_3$: 4-8), and fermentation time ($X_4$: 0-10 days). The experimental data were fitted to quadratic regression equations, the accuracy of the equations was analyzed by ANOVA, and the regression coefficients for the surface quadratic model of HAase inhibition activity in the fermented AC extract were estimated by the F test and the corresponding p values. The HAase inhibition activity indicated that fermentation time was most significant among the parameters within the conditions tested. To validate the model, two different conditions among those generated by the Design Expert program were selected. Under both conditions, predicted and experimental data agreed well. Moreover, the content of protodioscin (a well-known compound related to anti-inflammation activity) was elevated after fermentation of the AC extract at the optimized fermentation condition.

Extracts of Korean Medicinal Plant Extracts Alter Lipogenesis of Pig Adipose Tissue and Differentiation of Pig Preadipocytes In vitro (한국 약용식물 추출물이 In vitro 돼지 지방조직의 지방합성과 지방전구세포의 분화에 영향을 미친다)

  • Choi, Young-Suk;Choi, Kang-Duk;Kim, Sung-Do;Phillip, Owens;Chung, Chung-Soo
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.383-388
    • /
    • 2010
  • Identification of natural compounds that can prevent the development of obesity in vivo is time consuming and expensive. We have used in vitro systems derived from pig adipose tissue to screen simple aqueous or ethanolic extracts of Korean medicinal herbs (KMH) for their anti-adipogenic potential. A total of 183 extracts were tested for their actions in lipogenesis of pig adipose tissue and differentiation of pig preadipocytes. Ethanol extracts were prepared from 72 and aqueous extracts were prepared from 111 medicinal herbs. Both an ethanolic and an aqueous extract were prepared from 65 of these. Thirteen extracts substantially altered rates of lipogenesis in vitro. The effects of KMH on lipogenesis of pig adipose tissue are as follows. Elevens reduced lipogenesis to rates that were more than 40% lower than control and four of these reduced rates of lipogenesis by more than 70%. The most potent anti-lipogenic extracts were those obtained in ethanol from Iridaceae and from Sophora flavescens AIT as well as both the aqueous and ethanolic extracts from Lysimachia vulgaris L. Two extracts, those prepared in water from Caesalpiniae lignum and from Phellodendri cortex, were found to promote rates of lipogenesis in vitro. The effects of KMH on differentiation of pig preadoipocytes are as follows. Twentyeight extracts altered the rates of differentiation of cultured porcine preadipocytes. Sixteen increased and twelve reduced the rates of differentiation of preadipocytes. Extracts prepared in ethanol from Moutan radicis cortex and from Ostericum koreanum and those prepared in water from Angelicae gigantis radix, from Inula henenium L and from Magnolia flos doubled the rate of differentiation of cultured porcine preadipocytes. Ten extracts reduced the in vitro rate of differentiation of porcine preadipocytes by more than 35%. These were the ethanolic extracts from Glycyrrizae radix, Nepetae spica and from Polygala myrtifolia and the aqueous extracts from Amaranthaceae, Asparagus cochinchinesis, Atractylodis rhizoma alba, Citrus junos TANAKA, Cyperus rotundus, Epimedium grandiflorum and from Moutan radicis cortex. Only the ethanolic extract from Polygala myrtifolia was able to both reduce lipogenesis in adipose tissue slices and retard differentiation of cultured preadipocytes. The results of our study will provide meaningful information to identify medicinal herbs which would reduce fat deposition in livestocks and humans.