• Title/Summary/Keyword: Asian dust events

Search Result 98, Processing Time 0.022 seconds

The Recent Increase in the Heavy Rainfall Events in August over the Korean Peninsula

  • Cha, Eun-Jeong;Kimoto, Masahide;Lee, Eun-Jeong;Jhun, Jong-Ghap
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.585-597
    • /
    • 2007
  • The characteristics of the rainfall events on the Korean peninsula have been investigated by means of regional and global observational data collected from 1954 to 2004 with an emphasis on extreme cases $80\;mm\;day^{-1}$. According to our analysis, long-term annual rainfall anomalies show an increasing trend. This trend is pronounced in the month of August, when both the amount of monthly rainfall and the frequency of extreme events increase significantly. Composite maps on August during the 8 wet years reveal warm SST anomalies over the eastern Philippine Sea which are associated with enhanced convection and vertical motion and intensified positive SLP over central Eurasia during August. The rainfall pattern suggests that the most significant increase in moisture supply over the southern parts of China and Korea in August is associated with positive SLP changes over Eurasia and negative SLP changes over the subtropical western Pacific off the east coast of south China. The frequent generation of typhoons over the warm eastern Philippine Sea and their tracks appear to influence the extreme rainfall events in Korea during the month of August. The typhoons in August mainly passed the western coast of Korea, resulting in the frequent occurrence of extreme rainfall events in this region. Furthermore, anomalous cyclonic circulations over the eastern Philippine Sea also promoted the generation of tropical cyclones. The position of pressure systems - positive SLP over Eurasia and negative SLP over the subtropical Pacific - in turn provided a pathway for typhoons. The moisture is then effectively transported further north toward Korea and east toward the southern parts of China during the extreme rainfall period.

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula (WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구)

  • Jung, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.90-108
    • /
    • 2015
  • The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

Aerosol Observation with Raman LIDAR in Beijing, China

  • Xie, Chen-Bo;Zhou, Jun;Sugimoto, Nobuo;Wang, Zi-Fa
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 ${\mu}m$ in dust case, a bi-mode with fine particle centered at 0.2 ${\mu}m$ and coarse particle at 2 ${\mu}m$ was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.

Semi-continuous Measurements of PM2.5 OC and EC at Gosan: Seasonal Variations and Characteristics of High-concentration Episodes (준실시간 연속관측을 통한 제주 고산 PM2.5 OC와 EC의 계절별 사례별 특성)

  • Han, Jihyun;Bahng, Byungjo;Lee, Meehye;Yoon, Soon-Chang;Kim, Sang-Woo;Chang, Limseok;Kang, Kyeong-Sik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.237-250
    • /
    • 2013
  • At Gosan ABC superstation in Jeju Island, we measured organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ from October 2009 to June 2010 using a Sunset Laboratory Model-4 Semi-Continuous OC/EC Field Analyzer. It employs TOT (Thermal-Optical-Transmittance) method with NIOSH 5040 protocol and enables to continuously monitor OC and EC concentrations with 1-hour time resolution. The mean values of OC and EC for the entire period of measurements were $2.1{\pm}1.4{\mu}g/m^3$ and $0.7{\pm}0.6{\mu}g/m^3$, respectively. The OC/EC ratio was 3 and EC accounted $25{\pm}2.1%$ of total carbon (TC, TC=OC+EC). Although OC and EC showed similar trend in seasonal variation, the ratio of OC to EC was the highest in early summer when temperature was the highest and the air was affected by biomass burning in the southern part of China. In winter, the high OC and EC concentrations were likely influenced by increased coal combustion from residential heating. The high OC and EC concentrations were observed during events such as haze, dust, and the combination of the two. During the haze events, OC and EC were enhanced with increase in $PM_{10}$, $PM_{2.5}$, $SO_2$, and $NO_2$ with broad maxima. When dust occurred, both OC and EC started decreasing after reaching their maxima a couple of hours before $PM_{10}$ maximum. The peak separation of carbonaceous species and aerosol masses with time was more noticeable when haze event was followed by dust plume. These results confirm that OC and EC are key components of haze occurring in the study region.

Nephelometer Measurement of Aerosol Scattering Coefficients at Seoul (네펠로미터로 관측한 서울의 에어러솔 산란계수 특성)

  • Shim, Sungbo;Yoon, Young Jun;Yum, Seong Soo;Cha, Joo Wan;Kim, Jong Hwan;Kim, Jhoon;Lee, Bang-Yong
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.459-474
    • /
    • 2008
  • Aerosol scattering coefficients for three different wavelengths ($\lambda$=450,550,700 nm) are measured almost continuously by a nephelometer in Seoul for a period of 13 months (February 2007-February 2008), which includes two weeks break in August 2007 for measurements at Daegwallyeong and YoungJongdo. The mean of the daily average scattering coefficients at $\lambda$=550 nm is $194.1{\pm}144.2Mm^{-1}$ and the minimum and maximum are $14.3Mm^{-1}$ and $998.1Mm^{-1}$, respectively. The scattering coefficient shows a general increasing trend with atmospheric relative humidity (RH). When the data are classified according to weather conditions, the days with no major weather events show the smallest scattering coefficient and also the lowest RH. Surprisingly haze/fog days show the largest scattering coefficient and Asian dust days comes in second. Although the variation is large within a season, winter shows the largest and autumn shows the smallest scattering coefficient. The average ${\AA}ngstr{\ddot{o}}m$ exponent is $1.40{\pm}0.32$ for the entire Seoul measurement. As expected, Asian dust days show the smallest ${\AA}ngstr{\ddot{o}}m$ exponent and haze/fog days are the next, suggesting more efficient hygroscopic growth of aerosols for this weather condition. Aerosol scattering coefficient seems to show better correspondence with CCN concentration rather than total aerosol concentration, which may indicate that CCN active aerosols are also good scattering aerosols.

A Study on Enhancements of Aerosol, Ozone, and Its Precursors over Korea during Asian Dust Events Related to Regional Climate Condition

  • Moon, Yun-Seob;Shin, Hye-Jung;Kim, Yoo-Keun;Oh, Sung-Nam;Park, Byoung-Cheol;Chung, Hyo-Sang;Jeong, Ju-Hee;Kim, Seong-Kyoun;Kim, Jeong-Sik
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.255-258
    • /
    • 2002
  • The vertical exchange of trace gases and aerosols in upper regions of the atmosphere is primarily controlled by the atmospheric conditions. The study of the vertical and temporal variation of the upward transport of $H_2O$ and the downward transport of $O_3$, NO$_2$, CO and other long-lived trace species will enable a better understanding of these transport mechanisms. (omitted)

  • PDF

Optical Properties of Aerosol at Gongju Estimated by Ground-based Measurements Using Sky-radiometer (스카이라디오미터(Sky-radiometer)로 관측된 공주지역 에어로솔의 광학적 특성)

  • Kwak, Chong-Heum;Suh, Myoung-Seok;Kim, Maeng-Ki;Kwak, Seo-Youn;Lee, Tae-Hee
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.790-799
    • /
    • 2005
  • We investigate the optical properties of aerosols over Gongju by an indirect method using the pound measurement, Sky-radiometer. The analysis period is from January to December, 2004. Skyrad. pack.3 is used to estimate the optical properties, such as the aerosol optical thickness (AOT), single scattering albedo (SSA), ${\AA}ngstron$ exponent $({\alpha})$ and size distribution, of aerosols from the ground measured radiance data. And qualify control is applied to minimize the cloud-contaminated data and improve the quality of analysis results. The 12-month average of AOT, ${\alpha}$, and SSA are 0.46, 1.14, and 0.91, respectively. The average volume spectra of aerosols shows a bi-modal distribution, the first peak at fine mode and the second peak at coarse mode. AOT and coarse particles clearly increases while SSA decreases during the Asian dust events. The optical properties of aerosols at Gongju vary with?seasons, but those are not influenced by the wind direction.

Characteristics of Aerosol Mass Concentration and Chemical Composition of the Yellow and South Sea around the Korean Peninsula Using a Gisang 1 Research Vessel (기상1호에서 관측된 한반도 서해 및 남해상의 에어로졸 질량농도와 화학조성 특성)

  • Cha, Joo Wan;Ko, Hee-Jung;Shin, Beomchel;Lee, Hae-Jung;Kim, Jeong Eun;Ahn, Boyoung;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.357-372
    • /
    • 2016
  • Northeast Asian regions have recently become the main source of anthropogenic and natural aerosols. Measurement of aerosols on the sea in these regions have been rarely conducted since the experimental campaigns such as ACE-ASIA (Asian Pacific Regional Aerosol Characterization Experiment) in 2001. Research vessel observations of aerosol mass and chemical composition were performed on the Yellow and south sea around the Korean peninsula. The ship measurements showed six representative cases such as aerosol event and non-event cases during the study periods. On non-event cases, the anthropogenic chemical and natural soil composition on the Yellow sea were greater than those on the south sea. On aerosol event cases such as haze, haze with dust, and dust, the measured mass concentrations of anthropogenic chemical and element compositions were clearly changed by the events. In particular, methanesulfonate ($MSA^-$, $CH_3SO_3^-$), a main component of natural oceanic aerosol important for sulfur circulation on Earth, was first observed by the vessel in Korea, and its concentration on the Yellow sea was three times that on the south sea during the study period. Sea salt concentration important to chemical composition on the sea is related to wind speed. Coefficients of determination ($R^2$) between wind speed and sea salt concentration were 0.68 in $PM_{10}$ and 0.82 in $PM_{2.5}$. Maximum wave height was not found to be correlated to the sea salt concentration. When sea-salt comes into contact with pollutants, the total sea-salt mass is reduced, i.e., a loss of $Cl^-$ concentration from NaCl, the main chemical composing sea salt, is estimated by reaction with $HNO_3$(gas) and $H_2SO_4$(gas). The $Cl^-$ concentration loss by $SO_4^{2-}$ and $NO_3^-$ more easily increased for $PM_{10}$ compared to $PM_{2.5}$. The results of this study will be applied to verifying a dust-haze forecasting model. In addition, continued vessel measurements of aerosol data will become important to research for climate change studies in the future.

PM10 and PM2.5 Characterization based on Mass Concentration Long-term (1989 ~ 2012) Database in Yongin-Suwon Area (장기간 (1989 ~ 2012) 측정자료를 이용한 용인-수원지역에서의 PM10 및 PM2.5의 오염특성 분석 (질량농도 중심))

  • Lim, Hyoji;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.209-222
    • /
    • 2015
  • Fine and coarse PM had been collected by LVCI (low volume cascade impactor) and HVAS (high volume air sampler) during January 1989 to April 2012 at Kyung Hee University, Global Campus located on the boarder of Yongin and Suwon. The database of PM mass concentration was constructed and then intensively and extensively investigated to understand monthly, seasonal, and annual patterns of each PM behavior. Especially the study separated all the PM data into the 5 Period Zones, which were classified on the basis of social, political, and environmental issues that might be influencing local ambient air quality during the monitoring period. The overall $PM_{10}$ level had been continuously decreased until 2005 and after then was staggering due to rapidly increasing $PM_{2.5}$ level in $PM_{10}$. The annual average of $PM_{2.5}$ concentration varied from $34.3{\mu}g/m^3$ to $59.0{\mu}g/m^3$, which were much higher than the 2015 ambient air quality standard. The $PM_{2.5}$ level was strongly associated with haze events, while both $PM_{10}$ and $PM_{2.5}$ levels were associated with Yellow storm events. Daily concentrations of $PM_{2.5}$ were ranged $13.1{\sim}212.9{\mu}g/m^3$ in haze days and $33.6{\sim}124.6{\mu}g/m^3$ in Asian dust days. The study also intensively investigated annual and seasonal patterns of $PM_{2.5}/PM_{10}$ ratios.

Inspection on the Influence of Asian Dust on the Distribution of Atmospheric Mercury Observed for a Long Time (장기간 관측을 통한 황사 현상이 수은의 분포에 미치는 영향 고찰)

  • Lee, Jeong-Soon;Kim, Min-Young;Kim, Ki-Hyun;Hong, S.M.;Son, Z.H.;Lee, S.C.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.169-182
    • /
    • 2007
  • To evaluate the possibly potent role of Asian Dust (AD) on the long range transport of Hg, statistical analyses were carried out using the hourly concentration data of gaseous elemental mercury (Hg) along with relevant environmental parameters. For the purpose of this study, Hg data were collected from Yang-Jae monitoring station in Seoul, Korea during Sept. 1997 to June 2002. During the study period, Hg concentrations in non-AD period ranged from $0.03\;to\;32.70\;ng\;m^{-3}$ with a mean $5.27{\pm}3.06\;ng\;m^{-3}$, while those in AD period from $1.79\;to\;32.60\;ng\;m^{-3}$ with a mean $5.20{\pm}3.06\;ng\;m^{-3}$. The air quality during AD were typically deteriorated by enhanced PM10 mass concentration (by $2{\sim}5$ times) compared to non-AD period, however comparison of the Hg concentration data indicates that they are not critically distinguished between events of AD and non-AD, except for the high minimum level of Hg during AD. The results of correlation and factor analysis also indicated somewhat complex patterns; in the case of AD events, Hg and $SO_{2}$ were assorted concurrently into a same factor. Evidence collected from this study thus suggests that long-range transport of Hg, if occurring, is unlikely to raise statistically Hg concentration levels such as seen during AD event. However, in nighttime of winter season, Hg concentrations are higher during AD (along with PM10 levels) than non-AD period. Although such observations suggest the effect of long range transport on the enhancement of Hg concentrations, more deliberate analysis may be required to track down the effect of such mechanism in relation with various factors including the air mass transport route.