• Title/Summary/Keyword: Asian High-rise Building

Search Result 10, Processing Time 0.02 seconds

A Study on the Regional Aesthetics of Asian High-rise Buildings

  • Kwon, Jongwook
    • Architectural research
    • /
    • v.17 no.2
    • /
    • pp.49-56
    • /
    • 2015
  • For more than 100 years, American skyscrapers got along with the change of Modern architecture. However, high-rise building can not be regarded anymore as a monopoly of America. The purpose of this study is to clarify the aesthetic characteristics of Asian high-rise buildings. Basic concepts on the aesthetic and artistic expression of high-rise building have been discussed, emphasizing the importance of artistic characteristic. A brief introduction on the rise of Asian high-rise buildings also summarized in terms of changing trends for decades from 1970s. Among the 75 buildings in Asian countries out of 100 tallest buildings in the world, 10 buildings are selected to clarify the artistic characteristics which can be presented as an Asian trend in 21st century. The results can be summarized as follows; It was from 1990s that the Asian high-rise buildings began to express a specific regional aesthetics as a trend of post-modernism. Conventional ideas, traditional objects, and regional shapes and patterns are good instruments to successfully represent their national prides. Religions in Chinese and Islamic culture are popular motifs in Asian countries as well as feng shui and conventional idea of five primary elements. Traditional objects like pagoda and minaret are good precedents that can provide friendly recognized vertical objects. Many other interesting cases can be found referring to the traditional shapes and patterns like Chinese character, geometric pattern, Islamic sign, etc.

High-Rise Urban Form and Environmental Performance - An Overview on Integrated Approaches to Urban Design for a Sustainable High-Rise Urban Future

  • Yang, Feng
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.2
    • /
    • pp.87-94
    • /
    • 2016
  • High-rise as a building typology is gaining popularity in Asian mega-cities, due to its advantages in increasing volumetric density with limited land resources. Numerous factors contribute to the formation of high-rise urban form, from economical and institutional, environmental to socio-political. Environmental concerns over the impact of rapid urbanization in developing economies demand new thought on the link between urban environment and urban form. Outdoor and indoor climate, pedestrian comfort, and building energy consumption are all related to and impacted by urban form and building morphology. There are many studies and practices on designing individual "green" high-rise buildings, but far fewer studies on designing high-rise building clusters from the perspective of environmental performance optimization.. This paper focuses on the environmental perspective, and its correlation with the evolution of the high-rise urban form. Previous studies on urban morphology in terms of environmental and energy performance are reviewed. Studies on "parameterizing" urban morphology to estimate its environmental performance are reviewed, and the possible urban design implications of the study are demonstrated in by the author, by way of a microclimate map of the iconic Shanghai Xiao Lujiazui CBD. The study formulates the best-practice design guidelines for creating walkable and comfortable outdoor space in a high-rise urban setting, including proper sizing of street blocks and building footprint, provision of shading, and facilitating urban ventilation.

Application of Buckling Restrained Braces in a 50-Storey Building

  • Sy, Jose A.;Anwar, Naveed;Aung, Thaung Htut;Rayamajhi, Deepak
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • The use of Buckling Restrained Braces (BRB) for enhancing the performance of the buildings is gaining wider acceptance. This paper presents the first application of these devices in a major high-rise building in the Philippines. A 50-storey residential reinforced concrete building tower, with ductile core wall, with BRB system is investigated. The detailed modeling and design procedure of buckling restrained brace system is presented for the optimal design against the two distinct levels of earthquake ground motions; serviceable behavior for frequent earthquakes and very low probability of collapse under extremely rare earthquakes. The stiffness and strength of the buckling restrained brace system are adjusted to optimize the performance of the structural system under different levels of earthquakes. Response spectrum analysis is conducted for Design Basis Earthquake level and Service level, while nonlinear time history analysis is performed for the most credible earthquake. The case study results show the effectiveness of buckling restrained braces.

A Building Heating and Cooling Load Analysis of Super Tall Building considering the Vertical Micro-climate Change (초고층 오피스 건물의 수직외부환경 변화가 건물부하에 미치는 영향)

  • Kim, Yang-su;Song, Doosam;Hwang, Suk-Ho
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2010
  • In these days numerous super tall buildings are under construction or being planned in Middle East and Asian countries. Some of them are planned as an ultra high-rise building that goes over 600m tall, including Burj Khalifa, the tallest building in the world. External environment such as wind speed, temperature and humidity of the super tall building varies due to its vertical height. Therefore, it is necessary to consider these environmental changes to estimate building heating and cooling load. This paper analyzes how vertical microclimate difference affects building heating and cooling load in super tall building by simulation using radiosonde climate data. Besides, the correlation between air-tightness of building envelope and building load was analyzed for a super tall building.

Townscape in a High-rise: Imageability and Accessibility of Vertical Malls in Hong Kong

  • Tan, Zheng
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.2
    • /
    • pp.143-152
    • /
    • 2015
  • The increasing integration of public space and consumerism in Hong Kong has yielded new urban forms. The emergent vertical malls in Hong Kong and other East Asian metropolises have overturned the existing vertical order of the city. This vertical order is determined by the level of accessibility, but is being challenged by widely adopted vertical circulation technology. Inspired by Fredric Jameson's and Rem Koolhaas' reflections on the cultural significance of vertical transportation, this article examines the conflict between market logic and urban design requirements in the vertical interior spaces. "Departmentalization," as the current programming formula for vertical malls, can be further optimized by critically applying urban design doctrines such as Kevin Lynch's five elements of city image. It concludes with a statement that the knowledge base of vertical urbanism should be open to a set of new terminology informed by a new technological environment.

Performance Based Seismic Design State of Practice, 2012 Manila, Philippines

  • Sy, Jose A.;Anwar, Naveed;HtutAung, Thaung;Rayamajhi, Deepak
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • The purpose of this paper is to present the state of practice being used in the Philippines for the performance-based seismic design of reinforced concrete tall buildings. Initially, the overall methodology follows "An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region, 2008", which was developed by Los Angeles Tall Buildings Structural Design Council. After 2010, the design procedure follows "Tall Buildings Initiative, Guidelines for Performance-Based Seismic Design of Tall Buildings, 2010" developed by Pacific Earthquake Engineering Research Center (PEER). After the completion of preliminary design in accordance with code-based design procedures, the performance of the building is checked for serviceable behaviour for frequent earthquakes (50% probability of exceedance in 30 years, i.e,, with 43-year return period) and very low probability of collapse under extremely rare earthquakes (2% of probability of exceedance in 50 years, i.e., 2475-year return period). In the analysis, finite element models with various complexity and refinements are used in different types of analyses using, linear-static, multi-mode pushover, and nonlinear-dynamic analyses, as appropriate. Site-specific seismic input ground motions are used to check the level of performance under the potential hazard, which is likely to be experienced. Sample project conducted using performance-based seismic design procedures is also briefly presented.

Tall Buildings as Urban Habitats: A Quantitative Approach for Measuring Positive Social Impacts of Tall Buildings' Lower Public Space

  • Zhou, Xihui;Ye, Yu;Wang, Zhendong
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.1
    • /
    • pp.57-69
    • /
    • 2019
  • After decades of high-speed development, designing tall buildings as critical components of urban habitat, rather than simply standing aloof from their environments, has become an important concern in many Asian cities. Nevertheless, the lack of quantitative understanding cannot support efficient architectural design or urban renewal that targets better place-making. This study attempts to fill the gap by providing a typological approach for measuring the social impact of tall buildings' ground conditions: that is, public space, podiums, and interfaces. The central business districts (CBD) of three Asian cities, Shanghai, Hong Kong, and Singapore, were selected as cases. Typical patterns and categories of lower-level public spaces among the three CBDs were abstracted via typological analyses and field study. The following evaluation is achieved through the analytic hierarchy process (AHP). This quantified approach helps to provide a visualization of high or low positive social impacts of tall buildings' lower-level public spaces among the three cases. This study also helps to suggest a design code for tall buildings aimed at a more human-oriented urban habitat.

How Much Development Can a Rail Station Lead? A Case Study of Hong Kong

  • Xue, Charlie Qiuli;Sun, Cong
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.2
    • /
    • pp.95-109
    • /
    • 2018
  • Since the concept was first introduced in the 1970s, transit-oriented-development (TOD) has greatly expanded in East Asian cities such as Hong Kong. Rail stations are built together with clusters of residential-commercial towers and government services to form a new style of living - a "rail village." This paper examines the composition, scale, spatial form, organization and operation of several typical rail villages in Hong Kong. The cases range across those planned from the mid-1990s to 2015. Based on the analysis of the rail village composition, the paper derives a development ratio to indicate the density, effectiveness and efficiency of a rail village catchment area. The ratio provides a useful and direct figure for the comparison of different stations, cities and development modes.

Exploring New Paradigms in High-Density Vertical Hybrids

  • Ravindranath, Swinal Samant;Menon, Srilakshmi Jayasankar
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.2
    • /
    • pp.111-125
    • /
    • 2018
  • By the year 2050, the world population is set to increase to 9 billion people, of which 66% will be living in cities. It is argued that this will inevitably lead to further urban densification and soaring, inhumane and dense vertical environments. However, innovative and disruptive technologies impacting all realms of life means that we will also live, work, play, learn and make in novel ways, the beginnings of which are already becoming evident. These present opportunities for reimagining city environments, and in particular tall buildings, with a focus on reducing redundancies and re-appropriating existing buildings, creating novel hybrid environments, incorporating green and social democratic spaces, and integrating multiple modes of transport. This paper examines how vertical cities may perhaps be dense, resource efficient, and yet humane, presenting three possible scenarios for Singapore's context, which are, however, common to many Asian high-density urban environments. The scenarios presented are the outcome of Final-Year Thesis Projects undertaken by final-year architecture students at the National University of Singapore (NUS) in 2017.

Strengthening sequence based on relative weightage of members in global damage for gravity load designed buildings

  • Niharika Talyan;Pradeep K. Ramancharla
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.131-147
    • /
    • 2024
  • Damage caused by an earthquake depends on not just the intensity of an earthquake but also the region-specific construction practices. Past earthquakes in Asian countries have highlighted inadequate construction practices, which caused huge life and property losses, indicating the severe need to strengthen existing structures. Strengthening activities shall be proposed as per the proposed weighting factors, first at the higher weighted members to increase the capacity of the building immediately and thereafter, the other members. Through this study on gravity load-designed (GLD) buildings, relative weights are assigned to each storey and exterior and interior columns within a storey based on their contribution to the energy dissipation capacity of the building. The numerical study is conducted on mid-rise archetype GLD buildings, i.e., 4, 6, 8, and 10 stories with variable storey heights, in the high seismic zones. Non-linear static analysis is performed to compute weights based on energy dissipation capacities. The results obtained are verified with the non-linear time history analysis of 4 GLD buildings. It was observed that exterior columns have higher weightage in the energy dissipation capacity of the building than interior columns up to a certain building height. The damage in stories is distributed in a convex to concave parabolic shape from bottom to top as building height increases, and the maxima location of the parabola shifts from bottom to middle stories. Relative weighting factors are assigned as per the damage contribution. And the sequence for strengthening activities is proposed as per the computed weighting factors in descending order for regular RCC buildings. Therefore, proposals made in the study would increase the efficacy of strengthening activities.