• Title/Summary/Keyword: Asian Chicken Breeds

Search Result 62, Processing Time 0.023 seconds

Genetic Relationship in Chicken Breeds Using Molecular Co-ancestry Information

  • Ahlawat, S.P.S.;Vijh, R.K.;Mishra, Bina;Kumar, S.T. Bharani;Tantia, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.6-10
    • /
    • 2008
  • Five chicken populations viz. Chittagong, Ghagus, Kalasthi, Kadaknath, Tellichery were genotyped using 25 highly polymorphic microsatellite loci. White leg horn was taken as an outgroup. To reveal the relationship and distinctiveness among five indigenous breeds various genetic distances based on molecular co-ancestry were estimated and multidimensional scaling was performed. The Ghagus and Kalasthi breeds were closely related and their separation was recent, whereas Chittagong had a remote ancestry with other indigenous chicken populations.

Polymorphism of Ghrelin Gene in Twelve Chinese Indigenous Chicken Breeds and Its Relationship with Chicken Growth Traits

  • Li, C.C.;Li, K.;Li, J.;Mo, D.L.;Xu, R.F.;Chen, G.H.;Qiangba, Y.Z.;Ji, S.L.;Tang, X.H.;Fan, B.;Zhu, M.J.;Xiong, T.A.;Guan, X.;Liu, Bang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.153-159
    • /
    • 2006
  • A 2,656 bp fragment of chicken ghrelin gene was cloned and SNPs were detected by PCR-RFLP and Allele Specific PCR (ASP) in 12 Chinese indigenous chicken breeds and a commercial chicken population. The results showed that there were 23 base variations and an amino acid change ($Gln{\rightarrow}Arg$) in cloned chicken ghrelin gene. Three SNPs were confirmed in 13 populations and associations between this gene and growth traits of Tibetan chicken (TC) and Recessive White chicken (RW) were investigated. The results of haplotype analysis revealed that 26 haplotype genotypes were composed of eight haplotypes. The results of $x^2$ tests indicated that there were significant differences between genotypes or haplotype genotype frequencies in some of the breeds or sexes at 0.05 or 0.01 levels. The results of ANOVA revealed that there were significant differences between genotypes or haplotype genotypes on some growth traits of TC and RW chicken breeds at 0.05 or 0.01 levels. Multiple comparisons showed that there were significant associations between genotype CT at site 71 and some growth traits of two chicken breeds and between genotype AG at site 1,215 and body weight at 16 wk of two chicken breeds, and there was a significant association between haplotype genotype CAA/CAG and body weight and shank girth at 16 wk of two chicken breeds.

Comparison of Growth Performance, Carcass Characteristics and Meat Quality of Korean Local Chickens and Silky Fowl

  • Choo, Y.K.;Kwon, H.J.;Oh, S.T.;Um, J.S.;Kim, B.G.;Kang, C.W.;Lee, S.K.;An, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.398-405
    • /
    • 2014
  • This study was conducted to compare growth performance, carcass characteristics and meat quality of 4 breeds of local chicken. A total of 480 1-d-old chicks were distributed to 16 pens, with 4 treatments of breed, 4 replicates and 30 chicks per pen. Three Korean local breeds of white-mini broiler, Hanhyup-3-ho, and Woorimatdag, and a breed of silky fowl were raised under identical rearing and feeding conditions for 31-d, 37-d, 36-d, and 59-d, respectively. The BW and feed consumption on a pen basis were weekly measured for all pens, and ADFI, ADG and gain:feed were calculated for each pen. The ADFI and ADG of 3 breeds of Korean local chicken were greater than those of silky fowl (p<0.05). Within the Korean local breeds, ADFI of white-mini broiler was the highest (p<0.05), and ADG of Hanhyup-3-ho and white-mini broiler was the highest (p<0.05). Gain:feed of silky fowl was less than that of the 3 breeds of Korean local chicken. The carcass and breast yield of white-mini broiler were the greater than those of other breeds (p<0.05). The breast meat color (CIE $L^*$, $a^*$, and $b^*$) of 3 breeds of Korean local chicken were higher than that of silky fowl (p<0.05). The breast meat of Hanhyup-3-ho had greater cooking loss (p<0.05), whereas water holding capacity and pH were less than those of other breeds (p<0.05). The color score of 3 breeds of Korean local chicken was higher than that of silky fowl (p<0.05). Woorimatdag had a higher score on tenderness (p<0.05), whereas flavor score was less than that of other breeds (p<0.05). In conclusion, 4 local breeds of chicken have some unique features and seem to have more advantages, and this information can help consumers who prefer healthy and premium chicken meat.

Maternal Origin of Turkish and Iranian Native Chickens Inferred from Mitochondrial DNA D-loop Sequences

  • Meydan, Hasan;Jang, Cafer Pish;Yildiz, Mehmet Ali;Weigend, Steffen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1547-1554
    • /
    • 2016
  • To assess genetic diversity and maternal origin of Turkish and Iranian native chicken breeds, we analyzed the mtDNA D-loop sequences of 222 chickens from 2 Turkish (Denizli and Gerze) and 7 Iranian (White Marandi, Black Marandi, Naked Neck, Common Breed, Lari, West Azarbaijan, and New Hampshire) native chicken breeds, together with the available reference sequences of G. gallus gallus in GenBank. The haplotype diversity was estimated as $0.24{\pm}0.01$ and $0.36{\pm}0.02$ for Turkish and Iranian populations, respectively. In total, 19 haplotypes were observed from 24 polymorphic sites in Turkish and Iranian native chicken populations. Two different clades or haplogroups (A and E) were found in Turkish and Iranian chickens. Clade A haplotypes were found only in White Marandi, Common Breed and New Hampshire populations. Clade E haplotypes, which are quite common, were observed in Turkish and Iranian populations with 18 different haplotypes, of which Turkish and Iranian chickens, Clade E, haplotype 1 (TRIRE1) was a major haplotype with the frequency of 81.5% (181/222) across all breeds. Compared to red jungle fowl, Turkish and Iranian chicken breeds are closely related to each other. These results suggest that Turkish and Iranian chickens originated from the same region, the Indian subcontinent. Our results will provide reliable basic information for mtDNA haplotypes of Turkish and Iranian chickens and for studying the origin of domestic chickens.

Genetic Diversity and Relationships of Korean Chicken Breeds Based on 30 Microsatellite Markers

  • Suh, Sangwon;Sharma, Aditi;Lee, Seunghwan;Cho, Chang-Yeon;Kim, Jae-Hwan;Choi, Seong-Bok;Kim, Hyun;Seong, Hwan-Hoo;Yeon, Seong-Hum;Kim, Dong-Hun;Ko, Yeoung-Gyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1399-1405
    • /
    • 2014
  • The effective management of endangered animal genetic resources is one of the most important concerns of modern breeding. Evaluation of genetic diversity and relationship of local breeds is an important factor towards the identification of unique and valuable genetic resources. This study aimed to analyze the genetic diversity and population structure of six Korean native chicken breeds (n = 300), which were compared with three imported breeds in Korea (n = 150). For the analysis of genetic diversity, 30 microsatellite markers from FAO/ISAG recommended diversity panel or previously reported microsatellite markers were used. The number of alleles ranged from 2 to 15 per locus, with a mean of 8.13. The average observed heterozygosity within native breeds varied between 0.46 and 0.59. The overall heterozygote deficiency ($F_{IT}$) in native chicken was $0.234{\pm}0.025$. Over 30.7% of $F_{IT}$ was contributed by within-population deficiency ($F_{IS}$). Bayesian clustering analysis, using the STRUCTURE software suggested 9 clusters. This study may provide the background for future studies to identify the genetic uniqueness of the Korean native chicken breeds.

Assessment of genetic diversity and phylogenetic relationships of Korean native chicken breeds using microsatellite markers

  • Seo, Joo Hee;Lee, Jun Heon;Kong, Hong Sik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1365-1371
    • /
    • 2017
  • Objective: This study was conducted to investigate the basic information on genetic structure and characteristics of Korean Native chickens (NC) and foreign breeds through the analysis of the pure chicken populations and commercial chicken lines of the Hanhyup Company which are popular in the NC market, using the 20 microsatellite markers. Methods: In this study, the genetic diversity and phylogenetic relationships of 445 NC from five different breeds (NC, Leghorn [LH], Cornish [CS], Rhode Island Red [RIR], and Hanhyup [HH] commercial line) were investigated by performing genotyping using 20 microsatellite markers. Results: The highest genetic distance was observed between RIR and LH (18.9%), whereas the lowest genetic distance was observed between HH and NC (2.7%). In the principal coordinates analysis (PCoA) illustrated by the first component, LH was clearly separated from the other groups. The correspondence analysis showed close relationship among individuals belonging to the NC, CS, and HH lines. From the STRUCTURE program, the presence of 5 clusters was detected and it was found that the proportion of membership in the different clusters was almost comparable among the breeds with the exception of one breed (HH), although it was highest in LH (0.987) and lowest in CS (0.578). For the cluster 1 it was high in HH (0.582) and in CS (0.368), while for the cluster 4 it was relatively higher in HH (0.392) than other breeds. Conclusion: Our study showed useful genetic diversity and phylogenetic relationship data that can be utilized for NC breeding and development by the commercial chicken industry to meet consumer demands.

GENETICAL STUDIES ON NATIVE CHICKENS IN INDONESIA

  • Yamamoto, Y.;Namikawa, T.;Okada, I.;Nishibori, M.;Mansjoer, S.S.;Martojo, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.4
    • /
    • pp.405-410
    • /
    • 1996
  • Phylogenetic analyses were carried out using four Indonesian native chicken breeds; Kampung, Bangkok, Pelung and Kedu. Gene frequencies of four blood group (A, B, D and E) and eight electrophoretic loci (akp, Akp-2, Es-1, Amy-1, Alb, Tf, Pas and Pa-1) were examined. Geographical and breed specific trends in the gene frequencies were not found in the local population of Kampung breed or in four native breeds. The values of average heterozygosity were estimated as 0.35-0.45. Genetic distances among the local populations of Kampung breed and other native breeds were comparatively small. In a cluster analysis, the Bangkok breed and Kampung E population showed distance from another cluster. The coefficient of gene differentiation for local populations of Kampung breed was estimated as 0.099.

Assessment of Population Structure and Genetic Diversity of 15 Chinese Indigenous Chicken Breeds Using Microsatellite Markers

  • Chen, Guohong;Bao, Wenbin;Shu, Jingting;Ji, Congliang;Wang, Minqiang;Eding, Herwin;Muchadeyi, Farai;Weigend, Steffen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.331-339
    • /
    • 2008
  • The genetic structure and diversity of 15 Chinese indigenous chicken breeds was investigated using 29 microsatellite markers. The total number of birds examined was 542, on average 36 birds per breed. A total of 277 alleles (mean number 9.55 alleles per locus, ranging from 2 to 25) was observed. All populations showed high levels of heterozygosity with the lowest estimate of 0.440 for the Gushi chickens, and the highest one of 0.644 observed for Wannan Three-yellow chickens. The global heterozygote deficit across all populations (FIT) amounted to 0.180 (p<0.001). About 16% of the total genetic variability originated from differences between breeds, with all loci contributing significantly to this differentiation. An unrooted consensus tree was constructed using the Neighbour-Joining method and pair-wise distances based on marker estimated kinships. Two main groups were found. The heavy-body type populations grouped together in one cluster while the light-body type populations formed the second cluster. The STRUCTURE software was used to assess genetic clustering of these chicken breeds. Similar to the phylogenetic analysis, the heavy-body type and light-body type populations separated first. Clustering analysis provided an accurate representation of the current genetic relations among the breeds. Remarkably similar breed rankings were obtained with all methods.

Comparisons of Chicken Muscles between Layer and Broiler Breeds Using Proteomics

  • Jung, K. C.;Jung, W. Y.;Lee, Y. J.;Yu, S. L.;Choi, K. D.;Jang, B. G.;Jeon, J. T.;Lee, J. H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.307-312
    • /
    • 2007
  • The present study was carried out to investigate differentially expressed chicken muscle proteins using proteomics approach. More than 300 protein spots were investigated for the muscle samples in 2DE gels and the differentially expressed protein spots between pectoralis and peroneus longus muscles from Cornish and White Leghorn breeds were characterized by MALDI-TOF. In pectoralis muscles, PGAM1 protein was detected as differentially expressed between White Leghorn and Cornish breeds. On the other hand, 4 protein spots (SP22, nxf-2, SOD1, TNNI2) were differentially expressed between White Leghorn and Cornish breeds in peroneus longus muscles. These proteins assumed to be related with muscle development, growth, stress, and movements in chicken. In this experimental process, 2D reference map of the chicken muscle proteins was needed and 25 proteins, which were commonly expressed in both pectoralis and peroneus longus muscles in both breeds, were selected and characterized. Upon finishing the exact roles of the differentially expressed proteins, the identified 5 proteins will be used as valuable information for the fundamental mechanisms of muscle biology and underline genetics.

Investigation of MC1R SNPs and Their Relationships with Plumage Colors in Korean Native Chicken

  • Hoque, M.R.;Jin, S.;Heo, K.N.;Kang, B.S.;Jo, C.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.625-629
    • /
    • 2013
  • The melanocortin 1 receptor (MC1R) gene is related to the plumage color variations in chicken. Initially, the MC1R gene from 30 individuals was sequenced and nine polymorphisms were obtained. Of these, three and six single nucleotide polymorphisms (SNPs) were confirmed as synonymous and nonsynonymous mutations, respectively. Among these, three selected SNPs were genotyped using the restriction fragment length polymorphism (RFLP) method in 150 individuals from five chicken breeds, which identified the plumage color responding alleles. The neighbor-joining phylogenetic tree using MC1R gene sequences indicated three well-differentiated different plumage pigmentations (eumelanin, pheomelanin and albino). Also, the genotype analyses indicated that the TT, AA and GG genotypes corresponded to the eumelanin, pheomelanin and albino plumage pigmentations at nucleotide positions 69, 376 and 427, respectively. In contrast, high allele frequencies with T, A and G alleles corresponded to black, red/yellow and white plumage color in 69, 376 and 427 nucleotide positions, respectively. Also, amino acids changes at position Asn23Asn, Val126Ile and Thr143Ala were observed in melanin synthesis with identified possible alleles, respectively. In addition, high haplotype frequencies in TGA, CGG and CAA haplotypes were well discriminated based on the plumage pigmentation in chicken breeds. The results obtained in this study can be used for designing proper breeding and conservation strategies for the Korean native chicken breeds, as well as for the developing breed identification markers in chicken.