• Title/Summary/Keyword: Ash Recycling

Search Result 468, Processing Time 0.027 seconds

Removal of Unburned-Carbon from Fly-Ash of Bituminous Coal by Froth Flotation (포말부유선광법에 의한 유연탄 비산회의 미연탄소분 제거연구)

  • Son, Sung-Geun;Kim, Jung-Duk;Park, Byung-Wook
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.44-49
    • /
    • 1996
  • One of the most serious problems in utilizing the fly-ash produced from damcstic coal-firing power plants is lhc unburned-carbon mntained m the fly-ash In this shldy, the effects of fruther and collector an the yield,recuvery,unburnedcarbon rejectiou peiccntage,and process efficiency of product (cleaned fly-ash) wcrc examined when convzntional froth flotation was applied to rejcct the unburned-carbon included in the fly-ash of bituminous coal Alsa,the ash analysis for both thc raw and the clcaned fly-ash was conducted to review the change in thc major elements of fly-ash. Experimental results shawcd lhat tlle rcjectlon oI the unburned-cubon of thc raw fly-ash sample is available upto 92.4% using fiath flotalian and that the putity ol the pmdud(c1eancd fly-ash) attains up to 99.4%.

  • PDF

A Research of Bottom Ash as a Lihgtweight Vegetation Block to Take Advantage of the Mixing Ratio (Bottom Ash를 식생블록으로 활용하기 위한 배합비 연구)

  • Moon, Jong-Wook;Oh, Jung-Keun;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.125-129
    • /
    • 2012
  • With the development of the industry, such as homes and industries of electric energy usage and thereby increase the supply of electrical energy for power generation facilities were also increased. Among them an increase in thermal power plants, such as Bottom Ash was accompanied by an increase in industrial waste. If fly ash is recycled, some ten thousand Fly Ash and Bottom Ash Landfill, the recycling rate is low in most. In this study, in order to resolve the problem of fly ash recycling Bottom Ash to take advantage of low physical and chemical characteristics were analyzed. Evaluation of Physical Properties of Bottom Ash In addition, through the evaluation of functional properties of additives chogyeol condensation of 1 hour or more, within 3 hours of closing, Flow has more than 190mm of wheel load resistance value is less than 3mm flooring developed to study the subsequent emphasis on the Properties is based. Through these studies by developing a functional flooring help with the problem of resource depletion, and losses due to reclamation and pollution is to prevent.

Characteristics of the Bottom Ash in Municipal Solid Waste Incineration Ash (생활 폐기물 소각재 중 바닥재의 特性)

  • 안지환;한기천;김형석
    • Resources Recycling
    • /
    • v.10 no.4
    • /
    • pp.48-57
    • /
    • 2001
  • The main consistent materials and main elements of the bottom ash in municipal solid waste incineration ash according to particle size were investigated and the environmental hazards were considered by investigating the content of dioxin and heavy metals in bottom ash and the concentration of heavy metals in its leachate. The main materials of bottom ash are glasses, ceramics, scraps of iron. As the particle size increases, their percentage weight also increases and their percentage weight was over 70% in 4 mesh~25 mm particle size fraction. The main elements of bottom ash are CaO, $SiO_2$, $Fe_2$$O_3$,$ A1_2$$O_3$and the content of CaO decreases and the content of $SiO_2$increases as particle size increases. The heavy metals accumulate in small particle size fraction. The concentration of heavy metals in each leachate by domestic leaching test is almost similar. As the aging period is prolonged, pH of bottom ash lowers gradually and the leached concentration of Cu and Pb diminishes.

  • PDF

Characteristics of Specimens Made from Primary Clay and Red Hwangto with MSWI Fly Ash by Sintering Process (Sintering process에 의한 MSWI fly ash를 혼합한 일차점토(一次粘土)와 적황토(赤黃土) 공시체(公試體)의 특성(特性))

  • Yoo, Seung-Chol;Kwon, Moon-Sun;Park, Sang-Min
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.10-18
    • /
    • 2010
  • This research investigates the feasibility of ceramic specimens made from Primary clay and Red Hwangto with MSWI fly ash. Specimens preduced by mix-design maximum 20 wt% MSWI fly ash were analysed by SEM, UTM, ICP, etc. As a result of measurement,$P_{10}$ specimen was improved on bending strength and $R_5$ specimen was improved on compressive and bending strength. Also amount of extracted heavy metal was suitable for regulatory limits. This indicates that MSWI fly ash is indeed suitable for the partial replacement of ceramic materials in bricks.

Separation of High Purity and High Carbon Fly Ash by Electrostatic Method (정전선별법에 의한 고순도 석탄회와 고탄소 석탄회의 분리)

  • 한오형;깅현호
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2003
  • In 2001, Korea produced a total of 4.91 million metric tons of fly ash, approximately 63.3% of which was recycled. Almost all of the recycled fly ash are used in concrete mixtures and cement industry. Therefore, in order to develop a new usage to increase the utilization of the fly ash, conductive induction was used in this research rather than triboelectrostatic. By applying conductive induction, we could verify the possibility of obtaining high purity fly ash below 1%LOI and high carbon fly ash over 70%LOI from raw fly ash. In this test, the potential difference between the two electrodes was conducted by changing the range of 8 to 16 kV.

Bottom Ash on the Application for Use as Fine Aggregate of Concrete (바텀 애시를 콘크리트 잔골재로 사용하기 위한 활용성에 관한 연구)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Park, Seung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.173-179
    • /
    • 2014
  • This is an experimental study for recycling coal ash left over from coal use as a potential fine aggregate in concrete. Coal ash is generally divided into either fly ash or bottom ash. Fly ash has been utilized as a substitution material for cement in concrete mixes. On the other hand, bottom ash has the problem of low recycling rates, and thus it has been primarily reclaimed. This study partially substituted fine concrete aggregates with bottom ash to increase its application rate and therefore its recycling rate; its suitability for this purpose was confirmed. The concrete's workability dropped noticeably with increasing bottom ash content when a fixed water-cement ratio of concrete mix was used. Thus, concrete mixes with higher ratio levels are required. To address this problem, concrete was mixed using a polycarboxylate high-range water reducing agent. The fluidity and air entrainment immediately after mixing the concrete and 1 h after mixing were measured, thereby replicating the time concrete is placed in the field when produced either in a ready-mixed concrete or in a batch plant. As a result of this research, the workability and air entrainment were maintained 1 h after mixing for a concrete mixture with approximately 30% of its fine concrete aggregates substituted with the bottom ash. A slight drop in compression strength was seen; however, this confirmed that potential of using bottom ash as a fine aggregate in concrete.

Grinding Effects of Coal-Fired Pond Ash on Compressive Strength of Geopolymers (화력발전소 매립 석탄재의 분쇄가 지오폴리머의 강도에 미치는 영향)

  • Lee, Sujeong;Kang, Nam-Hee;Chon, Chul-Min;Jou, Hyeong-Tae
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.3-11
    • /
    • 2014
  • Bottom ash from coal fired power plants is not widely used due to a broad range of particle sizes and a high carbon content for producing geopolymers. The effect of mechanical activation on compressive strength of bottom ash- based geopolymers was examined by rod and planetary-ball milling to encourage full-fledged recycling of bottom ash, the main component of pond ash. The amount of amorphous component in the milled ash samples did not change significantly after the mechanical activation. It is presumably because needle-shaped mullite crystals, which is a major crystalline phase and grown in a glassy matrix, possess high strength and toughness, and therefore, they could endure external shocks and remain almost intact. Milling operation, however, decreased the particle size and improved the homogeneity of ash, thereby leading to increase reactivity of milled ash with alkali activators. Rod milling produced a relatively narrow particle size distribution of the milled ash particles; however, it was less effective in reducing the particle size. Nevertheless, it was interesting to observe that rod milling had equal effect on improving the compressive strength of geopolymers up to about 37%, as that of planetary ball milling. Rod milling is believed to be suitable process for enhancing the reactivity of bottom ash for large-scale recycling of bottom ash and producing geopolymers.