• Title/Summary/Keyword: Ash

Search Result 6,611, Processing Time 0.029 seconds

An Experimental Study on Hydration Heat and Strength Properties Concrete with High Volume Fly-Ash (플라이애시 콘크리트의 수화발열 특성과 압축강도 특성에 관한 실험적 연구)

  • 김우상;김광기;백민수;김우재;정재영;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.67-71
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash at the same time was used. It was used that the adiabatic temperature rise of concrete about the mass member which bad been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive streneth's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the tine to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

  • PDF

Experimental Investigation of Clay Fly Ash Bricks for Gamma-Ray Shielding

  • Mann, Harjinder Singh;Brar, Gurdarshan Singh;Mann, Kulwinder Singh;Mudahar, Gurmel Singh
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1230-1236
    • /
    • 2016
  • This study aims to determine the effect of fly ash with a high replacing ratio of clay on the radiation shielding properties of bricks. Some interaction parameters (mass attenuation coefficients, half value layer, effective atomic number, effective electron density, and absorption efficiency) of clay fly ash bricks were measured with a NaI(Tl) detector at 661.6 keV, 1,173.2 keV, and 1,332.5 keV. For the investigation of their shielding behavior, fly ash bricks were molded using an admixture to clay. A narrow beam transmission geometry condition was used for the measurements. The measured values of these parameters were found in good agreement with the theoretical calculations. The elemental compositions of the clay fly ash bricks were analyzed by using an energy dispersive X-ray fluorescence spectrometer. At selected energies the values of the effective atomic numbers and effective electron densities showed a very modest variation with the composition of the fly ash. This seems to be due to the similarity of their elemental compositions. The obtained results were also compared with concrete, in order to study the effect of fly ash content on the radiation shielding properties of clay fly ash bricks. The clay fly ash bricks showed good shielding properties for moderate energy gamma rays. Therefore, these bricks are feasible and eco-friendly compared with traditional clay bricks used for construction.

A Study on the Engineering Properties of Concrete Using High Volume of Volcanic Ash (화산재를 대량 사용한 콘크리트의 특성)

  • Jo Byung Wan;Koo Ja Kap;Park Seung Kook;Lee Yeon Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.33-36
    • /
    • 2005
  • Recently, the use of volcanic-ash as a part of cement content in concrete is very common. But, it has been indicated that the compressive strength of concrete using large amount of volcanic-ash as a part of cement content in early age is low and carbonation velocity is fast. To solve those problems, High Volume Volcanic-Ash Concrete which contained large amount of volcanic-ash as a part of fine aggregate has been proposed. This is an experimential study to compare and analyze the properties of High Volumn Volcanic-Ash Concrete according to the replacement method and ratio of volcanic-ash. For this purpose, the mix proportion of concrete according to the replacement method(PL, C10, C150, A10, A100, A150) And then slump, setting time, bleeding, compressive strength, tensile strength and carbornation test were performed. According to test results, it was found that the compressive strength of the concrete using the volcanic-ash as a part of fine aggregate(A) was higher than that of the concrete using the volcanic-ash as a part of cement content(C). And, the compressive strength of the A concrete increased in early age as well as in long tern age as the volcanic-ash content increased.

  • PDF

Experimental study on creep behavior of fly ash concrete filled steel tube circular arches

  • Yan, Wu T.;Han, Bing;Zhang, Jin Q.;Xie, Hui B.;Zhu, Li;Xue, Zhong J.
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.185-192
    • /
    • 2018
  • Fly ash can significantly improve concrete workability and performance, and recycling fly ash in concrete can contribute to a cleaner environment. Since fly ash influences pozzolanic reactions in concrete, mechanical behaviors of concrete containing fly ash differ from traditional concrete. Creep behaviors of fly ash concrete filled steel tube arch were experimentally investigated for 10% and 30% fly ash replacement. The axes of two arches are designed as circular arc with 2.1 m computed span, 0.24 m arch rise, and their cross-sections are all in circular section. Time dependent deflection and strain of loading and mid-span steel tube were measured, and long term deflection of the model arch with 10% fly ash replacement was significantly larger than with 30% replacement. Considering the steel tube strain, compressive zone height, cross section curvature, and internal force borne by the steel tube, the compressive zone height and structural internal forces increased gradually over time due to concrete creep. Increased fly ash content resulted in more significant neutral axis shift. Mechanisms for internal force effects on neutral axis height were analyzed and verified experimentally.

A Study on Hydration Heat Properties and Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 수화열특성 및 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash was used at the same time. It was used that the adiabatic temperature rise of concrete about the mass member which had been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive strength's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the time to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

A Study on the Compressive Strength Property of Mortar with Fly Ash Using Water Eluted from Recycled Coarse Aggregates (용출수를 사용한 플라이애쉬 혼입 모르타르의 강도특성에 관한 연구)

  • Shin, Sang-Yeop;Jeong, Euy-Chang;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.31-32
    • /
    • 2013
  • ThThe purpose of this study is to investigate the compressive strength properties of fly ash using water eluted from recycled coarse aggregate. When fly ash come into contact with water, they have not a autonomously chemical reaction. But fly ash is a pozzolan reaction when fly ash come into contact with water and calcium hydroxide(Ca(OH)2) in alkaline environment. For that reason, if water eluted from recycled coarse aggregate use mixture water, fly ash is expected to reaction of pozzolan reaction property in early stage. According to the experimentation result, ICP-MS analysis showed water eluted from recycled coarse aggregate has a high alkali-ash value of pH of 12 and over. And mixing ratio 30% fly ash mortar using water eluted from recycled coarse aggregate showed a similar strength of plain mortar due to the pozzolan reaction. Also, poor strength in initial age, disadvantage of mortar using fly ash, can be improved as hydration in early age is expedited due to calcium hydroxide(Ca(OH)2) and unhydrated cement component eluted from recycled aggregate mortar.

  • PDF

The Properties of Concrete Compressive Strength used Rice Straw Ash (소성된 볏짚을 혼입한 콘크리트 압축강도 특성)

  • Kim, Young-Soo;Shin, Sang-Yeop;Jeong, Euy-Chang
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.117-124
    • /
    • 2019
  • When manufacturing concrete, several mineral admixture is added to improve the basic physical property and durability and to make economical concrete. Such mineral admixture includes fly ash, granulated blast furnace slag, silica fume, etc., and not only the studies about mixing these mineral admixtures but also the studies for the development of new materials have been steadily in progress. Recently, some researchers have found, as a part of the development of new materials, the rice straw ash can also be used as a pozzolanic material for concrete considering similar chemical properties of rice straw ash to that of rice husk ash. But there has been insufficient amount of study about it. So, this study was to investigate the possibility as mineral admixture of agriculture by-product, by analyzing properties of concretes using rice straw ash with replacement ratio in comparison with other mineral admixture. In order to measure amount of SiO2 of rice straw ash, XRF(X-ray fluorescence) analysis was tested. For the measure pozzolanic reaction of rice straw ash, pH change and color change was tested according to curing day. Also to evaluate properties of concrete using rice straw ash, slump test, air contents test and compressive strength was tested.

Structural performance of concrete containing fly ash based lightweight angular aggregates

  • Pati, Pritam K.;Sahu, Shishir K.
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.291-305
    • /
    • 2022
  • The present investigation deals with the production of the innovative lightweight fly ash angular aggregates (FAA) first time in India using local class 'F' fly ash, its characterization, and exploring the potential for its utilization as alternative coarse aggregates in structural concrete applications. Two types of aggregates are manufactured using two different kinds of binders. The manufacturing process involves mixing fly ash, binder, and water, followed by the briquetting process, sintering and crushing them into suitable size aggregates. Tests are conducted on fly ash angular aggregates to measure their physical properties such as crushing value, impact value, specific gravity, water absorption, bulk density, and percentage of voids. Study shows that the physical parameters are significantly enhanced as compared to commercially available fly ash pellets (FAP). The developed FAA are used in concrete vis-à-vis conventional granite aggregates and FAP to determine their compressive, split tensile and flexural strengths. Although being lightweight, the strength parameters for concrete containing FAA are well compared with conventional concrete. This might be due to the high pozzolanic reaction between fly ash angular aggregates and cement paste. Also, RCC beams are cast and the load-deflection behaviour and ultimate load carrying capacity signify that FAA can be suitably used for RCC construction. Hence, the utilization of fly ash as angular aggregates can reduce the dead load of the structure and at the same time serves as a solution for fly ash disposal and mineral depletion problem.

Drying Shrinkage of High-Volume Fly Ash Concrete (High-Volume 플라이애쉬 콘크리트의 건조수축특성)

  • 최석균;이광명;이진용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.195-198
    • /
    • 1999
  • Fly ash is the most common artificial pozzolan, which is a material precipitated electrostatically from the exhaust gases of coal-fired power stations. Fly ash can be used as the supplementary material as well as the material for high performance concrete and hence, the development of high-volume fly ash concrete is imperative. In this study, the characteristics of drying shrinkage of high volume fly ash concrete is investigated. It is found from test results that as the replaced amount of fly ash in concrete is increased, drying shrinkage of concrete is reduced.

  • PDF

Fresh Properties and Strength Development of High Volume Fly Ash Concrete (많은 양의 플라이애쉬를 혼입한 콘크리트의 굳기전 특성 및 강도 발현)

  • 이진용;최수홍;강석화;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.99-104
    • /
    • 1998
  • A study is carried out to investigate the characteristics of concrete various level(0~60%) of fly ash. These results indicate that compressive strength of fly ash concrete seems to be slightly higher than that of ordinary concrete between 7 and 28 days, thereafter the strength of fly ash concrete is significantly higher. In fresh properties of the fly ash concrete, the loss of slump and air content with time up to 120 minutes is lower, but the setting time is increased with increasing fly ash content.

  • PDF