• Title/Summary/Keyword: Ascomyceteous fungi

Search Result 2, Processing Time 0.016 seconds

Observation of Soft-Rot Wood Degradation Caused by Higher Ascomyceteous fungi

  • Lee, Yang-Soo
    • Mycobiology
    • /
    • v.28 no.1
    • /
    • pp.47-50
    • /
    • 2000
  • The capability of higher ascomyceteous fungi to cause typical soft-rot decay for wood under laboratory conditions is reviewed and discussed. Fungi tested were extremely active in the decomposition of timbers. Scanning electron micrographs illustrated typical soft-rot decay pattern of higher wood decay ascomycetes, with the exception of H. trugodes that caused white-rot decay. Most of the fungi tested could be grouped as soft-rot fungi that showed typical soft-rot type II. Hypha confined primarily to the resin canals in softwoods or vessel elements in hardwoods and spread tracheid to tracheid via pits of cell wall to cell wall with mechanical force.

  • PDF

Phylogenetic study of penicillium chrysogenum based on the amino acid sequence analysis of chitin synthase

  • Park, Bum-Chan;Lee, Dong-Hun;Sook, Bae-Kyung;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.159-164
    • /
    • 1997
  • The phylogenetic study of Penicilium chrysogenum was performed based on amino acid sequence comparison of chitin synthase. Phylogenetic trees were constructed with the deduced amino acid sequences of the highly conserved region of chitin synthease gene fragments amplified by PCR. The BlasP similarity searcch and the bootstrap analysis of the deduced amino acid sequences of chitin synthase from P. chrysogenum with those form other fungi showed a close evolutionary relationship of Penicillium to ascomycetous fungi, especially to genus Aspergilus. The result from bootstrap analysis of the deduced amino acid sequences of the Class II chitin synthase from ascomyceteous fungi supported the usefulness of the Class II chitin synthease for phylogenetic study of filamentous fungi.

  • PDF