• 제목/요약/키워드: Asbestos-Based Friction Materials

검색결과 4건 처리시간 0.017초

자동차 브레이크용 고분자복합재료의 물리적 특성평가에 관한 연구 (A Study on the Evaluation of Physical Properties of Polymer-based Composite Materials for the Brake of the Automobile)

  • 손태관;김윤해;김봉식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권2호
    • /
    • pp.75-75
    • /
    • 1996
  • The rapid expansion for the auto-industry and the worldwide trend toward non-asbestos friction materials for brake lining force our industry to transfer into non-asbestos ones from asbestos-based friction materials. Furthermore, it is imperative for the friction materials to have technological excellence and lower production cost to be competitive in the world market. There is no known theoretical procedures to formulate friction materials. It, rather, depends on the trial and error process. Thus, it is quite clear how important it is to accumulate the know-how on the formulation and manufacturing the friction material. This study concerns the practical ways of conceptualizing the formulation and optimizing the manufacturing process. This study focused on the development of formulation for non-asbestos friction material as well as deriving the physical properties of the trial product to prove its validity and applicability. Elaboration of the formula and optimizing scheme of the manufacturing process to get better quality are also sought. Physical properties were obtained by constant velocity test dynamotest, hardness test and strength test. Differential scanning calorimeter was also used to analyze the thermal reactions of organic constituents, microstructures, bond effects, and degree of mixture.

자동차 브레이크용 고분자복합재료의 물리적 특성평가에 관한 연구 (A Study on the Evaluation of Physical Properties of Polymer-based Composite Materials for the Brake of the Automobile)

  • 손태관;김윤해;김봉식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권2호
    • /
    • pp.7-14
    • /
    • 1996
  • The rapid expansion for the auto-industry and the worldwide trend toward non-asbestos friction materials for brake lining force our industry to transfer into non-asbestos ones from asbestos-based friction materials. Furthermore, it is imperative for the friction materials to have technological excellence and lower production cost to be competitive in the world market. There is no known theoretical procedures to formulate friction materials. It, rather, depends on the trial and error process. Thus, it is quite clear how important it is to accumulate the know-how on the formulation and manufacturing the friction material. This study concerns the practical ways of conceptualizing the formulation and optimizing the manufacturing process. This study focused on the development of formulation for non-asbestos friction material as well as deriving the physical properties of the trial product to prove its validity and applicability. Elaboration of the formula and optimizing scheme of the manufacturing process to get better quality are also sought. Physical properties were obtained by constant velocity test dynamotest, hardness test and strength test. Differential scanning calorimeter was also used to analyze the thermal reactions of organic constituents, microstructures, bond effects, and degree of mixture.

  • PDF

동계 소결마찰재 개발에 관한 연구 (A Study on the Development of Cu-based Sintered Friction Materials)

  • 이종형;최병호;김정
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.83-92
    • /
    • 1997
  • In a study on the development of Cu-based sintered friction materials, the specimens pressed with various compacting pressures $(3-6 ton/cm^2/)$ have been evaluated to find the optimum condition of compacting pressure. As compacting pressure increased up to $(5 ton/cm^2/)$, mechanical properties such as density, hardness, bending strength, wear and coefficient of friction, etc. improved remarkably, but up to 6 ton/cm$^{2}$, decreased slightly because of traps of gases and water vapors in specimen. Disk assembly composed of 12 pieces of Cu-based friction materials has been compared with one of asbestos-and nonasbestos-based friction materials. In dynamic and driving tests to find burst spin strength, corrosion area rate and friction properties, etc., Cu-based sintered friction materials showed better properties than the others, especially in severe conditions because oxides such as $Cu_2O; and; SnO_2$ in the friction surface of friction materials were formed.

자동차 브레이크용 고분자 복합재료의 제조와 그 특성에 관한 연구 (Processing and physical properties of composite materials for the brake lining of the automobile)

  • 손태관;김봉식;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권4호
    • /
    • pp.51-60
    • /
    • 1995
  • Along with the rapid development of automobile industry in this country the necessity of high quality braking material is ever increased to maintain the comfortness as well as the safety the passengers. Asbestos-based friction materials are banned in the developed countries because of their cancer-inducing effect. This study focuses on the development of non-acbestos friction material with acceptable properties such as wear resistant high temperature endurant and low-noise enducing. We have all the intermediate test results indicating the contribution of each additives. These are qualitatively analyzed. Manufacturing processes such as opening of the kevlar and degasing at elevated temperature is equally important to attain proper level of friction quality.

  • PDF