• Title/Summary/Keyword: Asb-4

Search Result 24, Processing Time 0.02 seconds

Stage-specific Expression of Ankyrin and SOCS Box Protein-4 (Asb-4) during Spermatogenesis

  • Kim, Soo-Kyoung;Rhim, Si Youn;Lee, Man Ryul;Kim, Jong Soo;Kim, Hyung Jun;Lee, Dong Ryul;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.317-321
    • /
    • 2008
  • Members of the large family of Asb proteins are ubiquitously expressed in mammalian tissues; however, the roles of individual Asb and their function in the developmental testes have not been reported. In this report, we isolated a murine Asb4 from mouse testis. Northern blot analysis revealed that mAsb-4 was expressed only in testes and produced in a stage-specific manner during spermatogenesis. It was expressed in murine testes beginning in the fourth week after birth and extending into adulthood. Pachytene spermatocytes had the highest level of expression. Interestingly, the human homologue of mAsb-4, ASB-4 (hASB-4) was also expressed in human testis. These results suggest that ASB-4 plays pivotal roles in mammalian testis development and spermatogenesis.

다슬기로부터 칼슘락테이트의 제조와 품질특성

  • 김순동;이예경;이명예;장경호
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.122-122
    • /
    • 2003
  • 다슬기의 분말(PSB)과 그 회화분(ASB)으로부터 체내 흡수력이 높은 젖산칼슘의 제조조건과 색상, 용해도 및 관능적 품질을 조사하였다. PSB로부터 제조한 젖산칼슘(PSB-CL)의 PSB 및 젖산 100 mL에 대한 수율은 젖산농도가 10%일 때는 300% 및 15 g, 20%일 때는 260% 및 20 g이었으며, ASB로 제조한 젖산칼슘(ASB-CL)의 ASB 및 젖산 100 mL에 대한 수율은 10% 젖산에서는 400% 및 60 g, 20% 젖산에서는 329% 및 66 g으로 원료량을 기준으로 하였을 때는 다같이 젖산농도의 증가에 따라 감소하였으나 젖산의 부피를 기준으로 하였을 때는 젖산농도의 증가에 따라 증가하였다. Dehydated PSB-CL 및 ASB-CL 제조의 적정온도와 시간은 10$0^{\circ}C$에서는 각각 4 및 5시간, 12$0^{\circ}C$에서는 3 및 4시간, 15$0^{\circ}C$에서는 1 및 2시간으로 ASB-LA의 경우가 짧았다. IR 및 H-NMR spectrum의 분석결과 PBS-LA와 ASB-LA의 구조는 Ca($CH_3$CHOH$CO_2$)$_2$임이 확인되었다. 무수 PSB-CL 및 ASB-CL의 칼슘함량은 각각 15.4%(w/w)와 17.3%(w/w)로 이론 값의 각각 84.2%와 94.5%를 나타내었으며, 미량의 Fe, Na, Mn Zn을 함유하였다. PBS-CL와 ASB-CL의 색상은 각각 연한 황색과 연녹색을 지닌 백색을 띠었다. pH 3~8로 조정한 증류수에서 PSB-CL과 ASB-CL의 평균 용해도는 각각 5.43 g/100 mL 및 6.11 g/100 mL로 standard CL의 4.74 g/mL에 비하여 높았다. 국간장을 제외한 대부분의 액체식품(3% 소금물, 소주, 진간장, 국간장, 포도주스 및 오렌지주스)에서의 용해도는 PSB-CL(3.14~5.03 g/100 mL)과 ASB-CL(4.69~6.05 g/100 mL)이 standard CL(2.94~5.84 g/100 mL)에 비하여 높았다. 관능검사 결과, ASB-CL은 신맛이 낮아 사용범위가 높은 것으로 평가되었으며 PSB-CL는 쓴맛은 높으나 떫은맛이 낮고 구수한 맛이 강하여 식품에의 응용이 기대된다.

  • PDF

Single nucleotide polymorphisms for parentage testing of horse breeds in Korea

  • Sun-Young Lee;Su-Min Kim;Baatartsogt Oyungerel;Gil-Jae Cho
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.600-608
    • /
    • 2024
  • Objective: In this study, we aimed to evaluate the usability single nucleotide polymorphisms (SNPs) for parentage testing of horse breeds in Korea. Methods: The genotypes of 93 horse samples (38 Thoroughbred horses, 17 Jeju horses, 20 Quarter horses, and 18 American miniature horses) were determined using 15 microsatellite (Ms) markers (AHT4, AHT5, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG10, LEX3, and VHL20) and 101 SNP markers. Results: Paternity tests were performed using 15 Ms markers and 101 SNP markers in Thoroughbred horses and Quarter horses. AHT5, ASB2, ASB17, ASB23, CA425, HMS7, HTG10, and LEX3 did not follow Mendelian inheritance in Thoroughbred horses, whereas in Quarter horses, only AHT4, ASB2, and HMS2 showed Mendelian inheritance, consequently, paternity was not established. Meanwhile, 31 markers, including MNEc_2_2_2_98568918_BIEC2_502451, in Thoroughbred horses, and 30 markers, including MNEc_2_30_7430735_BIEC2_816793, in Quarter horses did not conform with Mendelian inheritance and therefore, could not be used for establishing parentage. Conclusion: The possibility of replacing Ms markers with SNP markers for paternity testing in horses was confirmed. However, further research using more samples is necessary.

Expression of Murine Asb-9 During Mouse Spermatogenesis

  • Lee, Man Ryul;Kim, Soo Kyoung;Kim, Jong Soo;Rhim, Si Youn;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.621-624
    • /
    • 2008
  • We previously showed that Asb-4 and Asb-17 is uniquely expressed in developing male germ cells. A recent report showed that Asb-9 is specifically expressed in the kidney and testes; however, detailed expression patterns in developing germ cells have not been shown. Northern blot analysis in various tissues demonstrated that mAsb-9 was strongly expressed in the testes. Expression analysis by RT-PCR and Northern blot in developing mouse testes indicates that mAsb-9 is expressed from the fourth week after birth to adulthood, with the highest expression in round spermatids. Expression sites were further localized by in situ hybridization in the testes. Pachytene spermatocytes and spermatids expressed mAsb-9 but spermatogonia and generated spermatozoa did not. This study reveals that mAsb-9 could be a specific marker of active spermatogenesis and would be useful for studies of male germ cell development.

A case of parentage testing in the Thoroughbred horse by microsatellite DNA typing (Microsatellite DNA형에 의한 더러브렛 말의 친자감정예)

  • Cho, Gil-Jae;Yang, Young-Jin;Kim, Bong-Hwan
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.1
    • /
    • pp.25-29
    • /
    • 2003
  • This study was carried out to investigate a usefulness of the microsatellite DNA markers for parentage verification of Thoroughbred (TB) horses. 9 TB horses samples were genotyped for nine international minimum standard markers (AHT4, 5, ASB2, HMS3, 6, 7, HTG4, 10, and VHL20), and the additional panel of four markers, ASB17, CA425, LEX33, and TKY321. This methods consisted of multiplexing PCR procedures, and it showed reasonable amplification of all PCR products. Genotyping was performed with an ABI 310 genetic analyzer. Foal I was excluded according to principles of Mendelian genetics in AHT4 (H/K), ASB2 (Q/Q), HMS3 (I/P), HTG4 (M/O), HTG1O (K/R), VHL20 (M/P), ASB17 (F/N), LEX33 (M/O), and TKY321 (G/I) markets. Foal II was excluded with markers AHT5 (K/M), ASB2 (M/N), HMS7 (N/N), HTG1O (K/K), VHL20 (I/I), ASB17 (F/F) and TKY321 (G/I). Foal III was excluded with markers AHT4 (O/O), AHT5 (K/K), ASB2 (M/R), HMS6 (M/P), HMS7 (O/O), HTG10 (R/S), VHL20 (L/M), and ASB17 (N/O). These results suggest that the present DNA typing is so useful for parentage verification of TB horses.

Assessment of genetic diversity using microsatellite markers to compare donkeys (Equus asinus) with horses (Equus caballus)

  • Kim, Su Min;Yun, Sung Wook;Cho, Gil Jae
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1460-1465
    • /
    • 2021
  • Objective: The study aimed to evaluate the diversity of donkey populations by comparing with the diversity of Thoroughbred and Jeju Halla horses; identified breeding backgrounds can contribute to management and conservation of donkeys in South Korea. Methods: A total of 100 horse (50 Thoroughbreds and 50 Jeju Halla horses) and 79 donkeys samples were genotyped with 15 microsatellite markers (AHT4, AHT5, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG10, LEX3, and VHL20), to identify genetic diversity and relationships among horses and donkeys. Results: The observed number of alleles per locus ranged from 1 (ASB17, HMS1) to 14 (AHT5), with a mean value of 4.87, 8.00, and 5.87 in Thoroughbreds, Jeju Halla horses, and donkeys, respectively. Of the 15 markers, AHT4, AHT5, ASB23, CA425, HMS2, HMS3, HTG4, HTG10, and LEX3 loci had relatively high polymorphism information content (PIC) values (PIC>0.5) in these three populations. Mean levels of genetic variation were HE = 0.6721 and HO = 0.6600 in Thoroughbreds, HE = 0.7898 and HO = 0.7100 in Jeju Halla horses, and HE = 0.5635 and HO = 0.4861 in donkeys. Of the 15 loci in donkeys, three loci had negative inbreeding coefficients (FIS), with a moderate mean FIS (0.138). The FIS estimate for the HTG4 marker was highest (0.531) and HMS6 marker was lowest (-0.001). The total probability of exclusion value of 15 microsatellite loci was 0.9996 in donkeys. Conclusion: Genetic cluster analysis showed that the genetic relationship among 79 donkeys was generally consistent with pedigree records. Among the three breeds, donkeys and Thoroughbred horses formed clearly different groups, but the group of Jeju Halla horses overlapped with that of Thoroughbred horses, suggesting that the loci would be suitable for donkey parentage testing. Therefore, the results of this study are a valid tool for genetic study and conservation of donkeys.

Evaluation of recent changes in genetic variability in Thoroughbred horses based on microsatellite markers parentage panel in Korea

  • Park, Chul Song;Lee, Sun Young;Cho, Gil Jae
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.527-532
    • /
    • 2022
  • Objective: In this study, we aimed to investigate the recent changes such as allele frequencies and total probability of exclusion (PE) in Thoroughbred horses in Korea using short tandem repeat (STR) parentage panels between 2006 and 2016. Methods: The genotype was provided for 5,988 horse samples with 15 microsatellite markers (AHT4, AHT5, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG10, LEX3 and VHL20). Results: In our study, the observed number of alleles per locus ranged from 3 (HMS1) to 9 (ASB17) in 2006 and 4 (HMS1) to 9 (ASB2) in 2016, with a mean value of 6.28 and 6.40, respectively. Of the 15 markers, HMS2, HTG4, and CA425 loci had relatively low polymorphism information content (<0.5000) in the Thoroughbred population. Mean levels of genetic variation in 2006 and 2016 were observed heterozygosity (HO) = 0.708, and expected heterozygosity (HE) = 0.685, as well as and HO = 0.699 and HE = 0.682, respectively. The PE was calculated for each group based on the allele frequencies of 14 or 15 STRs. The 2006 survey analyzed that PE was 0.9998, but it increased to 0.9999 in 2016 after the HMS2 marker was added in 2011. The current STR panel is still a powerful tool for parentage verification that contributes to the maintenance of integrity in the Thoroughbred population. Conclusion: The current STR panel is still a powerful tool for parentage verification that contributes to the maintenance of integrity in the Thoroughbred horses. However, continuous monitoring genetic variability is necessary.

A study on the effect comparative of acanthopanax stem bark (ASB) and acanthopanax root bark (ARB) on the monosodium iodoacetate (MIA)-induced osteoarthritis rats (오가피(五加皮) 수피(樹皮)와 근피(根皮)의 MIA 유도 골관절염 흰쥐에 미치는 영향 비교)

  • Sim, Woo-Hyung;Seo, Bu-Il
    • The Korea Journal of Herbology
    • /
    • v.33 no.5
    • /
    • pp.53-66
    • /
    • 2018
  • Objectives : This study was designed to compare the effects of acanthopanax stem bark (ASB) and acanthopanax root bark (ARB) on the monosodium iodoacetate (MIA)-induced osteoarthritis rats. Methods : The antioxidant activities were evaluated through radical scavenging assays using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. Also, we examined total poly phenol and flavonoids contents. Osteoarthritis was caused by injection MIA($50{\mu}{\ell}$ with $80mg/m{\ell}$) into the knee joint cavity of rats. Rats were divided by 4 groups (normal group, control group, ASB treated group, ARB treated group, each n=6). The changes in the levels of reactive oxygen species (ROS), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were analyzed after experiment. Also, the anti-oxidant, inflammatory protein levels were investigated western blot analysis. Knee joint tissue, histopathological observation hematoxylin & eosin staining and safranin-O staining were measured. Results : In the present study, ARB treated group showed superior inhibitory effects on the inflammatory parameters than the ASB treated group. ARB aqueous extract was effective in antioxidant measurements. The administration of ARB showed a significant reduction of changes in relative hind paw weight distribution. Morever, it decreased ROS, ALT and AST levels in serum, compared with those of the control rats. The ARB administration inhibited the biomarkers of inflammatory in tissues. Conclusions : ASB aqueous extract and ARB aqueous extract have a great effect on osteoarthritis, and ARB aqueous extract has excellent effect on osteoarthritis through antioxidant and anti-inflammation.

Parentage Testing for Thoroughbred Horse by Microsatellite DNA Typing (Microsatellite DNA형 분석을 이용한 더러브렛 말의 친자감정)

  • Cho, G.J.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • The objective of present study was to ascertain parentage of Thoroughbred(TB) horses in Korea. A total of 2,029 TB horse samples including 993 foal samples for parentage testing were genotyped for nine international minimum standard markers(AHT4, 5, ASB2, HMS3, 6, 7, HTG4, 10, and VHL20). This method consisted of multiplexing PCR procedure, and showed reasonable amplification of all PCR products. Genotyping was performed with an ABI 310 genetic analyzer. The number of alleles per locus varied from 5 to 11 with a mean value of 7.33 in TB. Expected heterozygosity was ranged from 0.544 to 0.837(mean 0.709) and the total exclusion probability of 9 microsatellites loci was 0.9978. Of the 9 markers, ASB2, HMS7 and HTG10 loci have relatively high PIC value(>0.7). All of the 993 foals were qualified by compatibility according to Mendelian fashion in the present DNA typing for parentage testing. These results suggest that the present DNA typing has high potential for parentage verification of TB horses.

Genetic diversity and population structure of Mongolian regional horses with 14 microsatellite markers

  • Yun, Jihye;Oyungerel, Baatartsogt;Kong, Hong Sik
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1121-1128
    • /
    • 2022
  • Objective: This study aimed to identify the genetic diversity and population structure of Mongolian horse populations according to the province of residence (Khentii, KTP; Uvs, USP; Omnogovi and Dundgovi, GOP; Khovsgol, KGP) using 14 microsatellite (MS) markers. Methods: A total of 269 whole blood samples were obtained from the four populations (KTP, USP, GOP, KGP) geographically distinct provinces. Multiplex polymerase chain reaction (PCR) was conducted using 14 MS markers (AHT4, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG6, HTG7, and VHL20), as recommended by the International Society for Animal Genetics. Capillary electrophoresis was conducted using the amplified PCR products, alleles were determined. Alleles were used for statistical analysis of genetic variability, Nei's DA genetic distance, principal coordinate analysis (PCoA), factorial corresponding analysis (FCA), and population structure. Results: On average, the number of alleles, expected heterozygosity (HExp), observed heterozygosity (HObs), and polymorphic information content among all populations were 11.43, 0.772, 0.757, and 0.737, respectively. In the PCoA and FCA, GOP, and KGP were genetically distinct from other populations, and the KTP and USP showed a close relationship. The two clusters identified using Nei's DA genetic distance analysis and population structure highlighted the presence of structurally clear genetic separation. Conclusion: Overall, the results of this study suggest that genetic diversity between KTP and USP was low, and that between GOP and KGP was high. It is thought that these results will help in the effective preservation and improvement of Mongolian horses through genetic diversity analysis and phylogenetic relationships.