• Title/Summary/Keyword: As welded

Search Result 1,402, Processing Time 0.029 seconds

Study on Friction Welding of Torsion Bar Material(II) - Effect of PWHT on Friction Weld Quality- (토션바재의 마찰용접에 관한 연구(II) -용접 후열처리가 마찰용접 품질에 미치는 영향-)

  • Oh, Sae-Kyoo;Lee, Jong-Du
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.244-244
    • /
    • 1990
  • This paper deals with investigating experimentally the effects of PWHT on the weld quality such as strength, toughness, hardness and micro-structure of the welded joints in friction welding of torsion bar material SUP9A bar to bar. The results obtained are summarized as follows; 1) It was certified that the condition of the post-weld heat treatment(PWHT) for the friction welded joints was very satisfactory because both strength and toughness of the joints were improved as almost same as those of the base metal or better by the PWHT. 2) The peak of hardness distribution of the friction welded joints can be eliminated by PWHT, resulting in being almost equalized at the weld interface, the HAZ(heat affected zone) and the base metal. 3) The micro-structure of the base meta., HAZ and weld interface(WI) of friction welded joints welded at the optimum welding condition consists of the same sorbite structure obtained by PWHT and fined sorbite at WI, resulting in increasing toughness as well as strength, and no micro structural defect has been found at the friction welded zone.

Fatigue Behavior Analysis of Welded Rod/Knuckle Assembly for Hydraulic Cylinder (용접이음 된 유압 실린더용 로드/너클 조립체의 피로거동 해석)

  • Rhee, Hwanwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.93-99
    • /
    • 2013
  • Parts and structures such as piston rod and knuckle joint for the use of hydraulic cylinder are often welded together in some fashion, usually due to cost and process effectiveness. Welding strongly affects the material by the process of heating and subsequent cooling as well as by the fusion process with additional filler material. Furthermore, a weld is usually far from being perfect, containing inclusions, pores, cavities, undercuts etc. As a consequence, fatigue failures appear in welded structures mostly at the welds rather than in the base metal, even if the latter contains notches. For this reason, fatigue analyses are of high practical interest for all welded structures under the action of cyclic loads. This paper describes the influence of welding parameters, material combinations and heat treatment on the fatigue behavior of welded cylinder rod. In addition, statistical characterization of stress-life response in weldment of hydraulic cylinder rod are presented.

A Study on Fatigue Design for Fillet Welded faint of STS301L (STS301L 필렛 용접이음재의 피로설계에 관한 연구)

  • Baek, Seung-Yeop;Bae, Dong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.29-31
    • /
    • 2006
  • Stainless steel sheets are widely used as the structural material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. For fatigue design of gas welded joints such as fillet and plug type joint, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of gas welded joints. And also, the influence of the geometrical parameters of gas welded joints on stress distribution and fatigue strength must be evaluated. the ${\Delta}P-N_f$ curves were obtained by fatigue tests. Using these results, ${\Delta}P-N_f$ curves were rearranged in the ${\sigma}-N_f$ relation with the maximum stress at the edge of fillet welded joint.

  • PDF

A Study on Fatigue Design for Welded Joint of STS301L (STS301L 용접이음재의 피로설계에 관한 연구)

  • Baek, Seung-Yeb
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.127-131
    • /
    • 2010
  • Stainless steel sheets are widely used as the structural material for the railroad cars and the commercial vehicles. These kinds of structures used stainless steel sheets are commonly fabricated by using the gas welding. For fatigue design of gas welded joints such as fillet and plug type joint, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of gas welded joints. And also, the influence of the geometrical parameters of gas welded joints on stress distribution and fatigue strength must be evaluated. Thus, in this paper, ${\Delta}P-N_f$ curves were obtained by fatigue tests. Using these results, ${\Delta}P-N_f$ curves were rearranged in the. ${\Delta}{\sigma}-N_f$ relation with the hot spot stresses at the gas welded joints.

The Mechanical Properties and the Nondestructive Evaluation of Dissimilar Friction Welded Steel Bars (이종마찰용접 강봉재의 기계적특성과 비파괴 평가)

  • Jung, W.T.;Kong, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-82
    • /
    • 2006
  • In this study, dissimilar friction welding were produced using 15mm diameter solid bar in chrome molybedenum steel(SCM440) to carbon steel(S45C) to investigate their mechanical properties and the relationship between the weld parameters and the nondestructive coefficients, such as AE counts and ultrasonic attenuation coefficient. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and heat affected zone. The specimens were tested as-welded and post weld heat treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. The ductility of PWHT specimens is higher than as-welded.

  • PDF

A Study on the Fatigue Strength of a Welded Joint with Misalignment of a U-type Trough Rib in a Steel Deck Plate (강상판(鋼床版) U형(形) 트라프리브 단차용접(段差熔接)이음부(部)의 피로강도(疲勞强度)에 관(關)한 연구(硏究))

  • Lee, Dong Uk;Seo, Won Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.13-20
    • /
    • 1996
  • With the adoption of welded joints rather than bolted joints, we investigate the fatigue strength and the fatigue crack initiation of U-type trough rib and welded specimen with misalignment in a steel deck plate. The stress concentration factor of welded specimens with a misalignment is also verified by a finite element method. The main conclusions obtained from this study are as follows Experimental results of full-scaled U-type trough rib models have indicated that fatigue life depends on misalignments of welded joints in steel deck plate ; The more misalignments are, the less the fatigue life is. It has also shown that fatigue crack propagates from the welded root to the bead surface. We have also obtained the same results from both the fatigue test of welded specimens with a misalignment and the stress analysis of a finite element method.

  • PDF

Numerical Analysis Model for Fatigue Life Prediction of Welded Structures (용접구조물의 피로수명예측을 위한 수치해석모델)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.49-54
    • /
    • 2009
  • In this study, the numerical analysis model for fatigue life prediction of welded structures are presented. In order to evaluate the structural degradation of welded structures due to fatigue loading, continuum damage mechanics approach is applied. Damage evolution equation of welded structures under arbitrary fatigue loading is constructed as a unified plasticity-damage theory. Moreover, by integration of damage evolution equation regarding to stress amplitude and number of cycles, the simplified fatigue life prediction model is derived. The proposed model is compared with fatigue test results of T-joint welded structures to obtain its validation and usefulness. It is confirmed that the predicted fatigue life of T-joint welded structures are coincided well with the fatigue test results.

Evaluation of the Finite Element Modeling of Spot-Welded Region for Crash Analysis (충돌해석에서의 점용접부 모델링에 따른 하중특성 평가)

  • Song, Jung-Han;Huh, Hoon;Kim, Hong-Gee;Kim, Sung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.174-183
    • /
    • 2006
  • The resistance spot-welded region in most current finite element crash models is characterized as a rigid beam at the location of the welded spot. The region is modeled to fail with a failure criterion which is a function of the axial and shear load at the rigid beam. The role of this rigid beam is simply to transfer the load across the welded components. The calculation of the load acting on the rigid beam is important to evaluate the failure of the spot-weld. In this paper, numerical simulation is carried out to evaluate the calculation of the load at the rigid beam. The load calculated from the precise finite element model of the spot-welded region considering the residual stress due to the thermal history during the spot welding procedure is regarded as the reference value and the value of the load is compared with the one obtained from the spot-welded model using the rigid beam with respect to the element size, the element shape and the number of imposed constraints. Analysis results demonstrate that the load acting on the spot-welded element is correctly calculated by the change of the element shape around the welded region and the location of welded constrains. The results provide a guideline for an accurate finite element modeling of the spot-welded region in the crash analysis of vehicles.

CHARACTERISTICS OF ROLLED H SECTION STEEL WELDS JOINTED BY NEWLY DEVELOPED FLASH WELDING SYSTEM

  • Kim, You-Chul;Oku, Kentaro;Umekuni, Akira;Fujii, Mitsuru
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.826-830
    • /
    • 2002
  • In the civil engineering and architecture fields, welding for large sectional members, such as I section steel and H section steel, are usually performed. a flash welding system, by which large I section steel or H section steel can be welded for a short time, was newly developed. In order to know the basic characteristics of welded joints, the specimens were cut out from flash welded joints, and tensile and fatigue experiments were carried out. The joint efficiency of welded joints by flash welding is 100% for the specimens with reinforcements and 93% for without reinforcements. The fatigue strength of welded joints with reinforcement was about 50% of that of the base metal. Removing the reinforcement generated by flash welding, fatigue strength of flash welded joints became 75% of that of the base metal. In case of flash welded joints with reinforcements, after a couple of fatigue cracks had propagated, ductile fracture occurred at the toe. In flash welded joints without reinforcements, fracture occurred at the bond or at HAZ (Heat Affected Zone). In case of fracture at the bond, fracture was brittle, and in case at HAZ, fracture was ductile.

  • PDF

Improvement of Fatigue Strength by Spot Heating for Out-of-plane Gusset (국부가열을 이용한 면외거셋의 피로강도 향상)

  • Jung, Young-Hwa;Nam, Wang-Hyone;Chang, Dong-Huy
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.213-222
    • /
    • 2001
  • In the study, the fatigue strength improvement and mechanism have been estimated by the Spot-Heating treatment on welded bead toes. For this, web-gusset specimens were made without residual stresses and the others with residual stresses imposed by Spot-Heating. The 4-point bending tests were performed in order to estimate the effect of spot-heating on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue test, fatigue strength of As-Welded specimen for non load-carrying fillet welded joints subjected to pure bending has satisfied the grade of fatigue prescribed in specifications of korea, AASHTO and JSSC. As compare with As-Welded specimen and Spot-Heating specimen have increased about 20% for the fatigue strength at $7.7{\times}10^6$ cycles. The Spot-Heating by reformation of the residual stress on welded bead toes has greatly affected the fatigue crack propagation life, but has slightly affected the fatigue crack initiation life.

  • PDF