• 제목/요약/키워드: As contaminated soil

검색결과 1,165건 처리시간 0.028초

유류오염토양 중 다환방향족탄화수소류(PAHs) 분석방법 연구 - US EPA 16종 PAHs를 중심으로 (Analytical Method of Polycyclic Aromatic Hydrocarbons (PAHs) in Petroleum Contaminated Soils - Focused on the 16 US EPA Priority PAHs)

  • 김지영;김동호;김태승;한진석;이재영;노회정
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권5호
    • /
    • pp.20-30
    • /
    • 2012
  • In case of analyzing PAHs (EPA 16 compounds) in oil-contaminated soils, the lump of peaks may occur because of the aliphatic and polar compounds in oil. This phenomenon is due to the lower accuracy of the analysis. To solve this problem, evaluation of application of silicagel-alumina multi-layer fraction was performed using standard substances and oil-contaminated soils. As a result of application of silicagel-alumina multi-layer fraction cleanup method using standard substances, recovery rates of surrogate standards (5 compounds including Naphthalene-d8) were 83~100% and those of target standards were 75~129%. These were to meet the target values (60~130%) in this study. When used 4% water-silicagel column analyze PAHs in oil-contaminated soils, Some problems were generated for quantitative analysis of PAHs; concentration of PAHs was underestimated due to an upward baseline of internal standard (recovery rate: less than 60%) and overestimated by the lump of peaks which were not purified (the biggest recovery rate: more than 400%). On the other hand, in case of silicagel-alumina multi-layer fraction cleanup method, recovery rate of surrogate standards were 61~101.6%. Therefore this cleanup method was considered a valid method to improve accuracy of analysis of PAHs in oil-contaminated soils.

Inoculation Effect of Methanotrophs on Rhizoremediation Performance and Methane Emission in Diesel-Contaminated Soil

  • Ji Ho Lee;Hyoju Yang;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권7호
    • /
    • pp.886-894
    • /
    • 2023
  • During the rhizoremediation of diesel-contaminated soil, methane (CH4), a representative greenhouse gas, is emitted as a result of anaerobic metabolism of diesel. The application of methantrophs is one of solutions for the mitigation CH4 emissions during the rhizoremediation of diesel-contaminated soil. In this study, CH4-oxidizing rhizobacteria, Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, were isolated from rhizosphere soils of tall fescue and maize, respectively. The maximum CH4 oxidation rates for the strains JHTF4 and JHM8 were 65.8 and 33.8 mmol·g-DCW-1·h-1, respectively. The isolates JHTF4 and JHM8 couldn't degrade diesel. The inoculation of the isolate JHTF4 or JHM8 significantly enhanced diesel removal during rhizoremediation of diesel-contaminated soil planted with maize for 63 days. Diesel removal in the tall fescue-planting soil was enhanced by inoculating the isolates until 50 days, while there was no significant difference in removal efficiency regardless of inoculation at day 63. In both the maize and tall fescue planting soils, the CH4 oxidation potentials of the inoculated soils were significantly higher than the potentials of the non-inoculated soils. In addition, the gene copy numbers of pmoA, responsible for CH4 oxidation, in the inoculated soils were significantly higher than those in the non-inoculated soils. The gene copy numbers ratio of pmoA to 16S rDNA (the ratio of methanotrophs to total bacteria) in soil increased during rhizoremediation. These results indicate that the inoculation of Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, is a promising strategy to minimize CH4 emissions during the rhizoremediation of diesel-contaminated soil using maize or tall fescue.

o-DGT를 생체모사 대표물질로 이용한 오염토양에서 phenanthrene의 식물축적 평가 (o-DGT as a Biomimic Surrogate to Assess Phytoaccumulation of Phenanthrene in Contaminated Soils)

  • 최지연;신원식
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권6호
    • /
    • pp.16-25
    • /
    • 2019
  • Anthropogenic polycyclic aromatic hydrocarbons (PAHs) are formed by the incomplete combustion of fuels and industrial waste. PAHs can be widely exposed to the environment (water, soil and groundwater). PAHs are potentially toxic, mutagenic and/or carcinogenic. Fundamental studies such as biota uptake (e.g., earthworm and plant) of PAHs are highly needed. It is necessary to develop alternative ways to evaluate bioavailability of PAHs instead of using living organisms because it is time-consuming, difficult to apply in the field, and also exaction method is tedious and time-consuming. In this study, sorption behaviors of phenanthrene were evaluated to predict the fate of PAHs in soils. Moreover, bioaccumulation of PAHs in an artificially contaminated soil was evaluated using pea plant (Pisum sativum) as a bioindicator. A novel passive sampler, organic-diffusive gradient in thin-film (o-DGT) for PAHs was newly synthesized, tested as a biomimic surrogate and compared with plant accumulation. Sorption partitioning coefficient (KP) and sorption capacity (KF) were in the order of natural soil > loess corresponding to the increase in organic carbon content (foc). Biota-to-soil accumulation factor (BSAF) and DGT-to-soil accumulation factor (DSAF) were evaluated. o-DGT uptake was linearly correlated with pea plant uptake of phenanthrene in contaminated soil (R2=0.863). The Tenax TA based o-DGT as a biomimic surrogate can be used for the prediction of pea plant uptake of phenanthrene in contaminated soil.

중금속 및 유류로 오염된 토질의 성토재료로서의 안정성에 관한 연구 (The Research on The Stability as Fill Material of Soil Defiled by Oil Element and Heavy Metals)

  • 이충숙;엄태규;최용규;이민희
    • 한국지반환경공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.5-13
    • /
    • 2004
  • 아파트 건설용 부지내에서 중금속 및 유류로 오염된 토사가 발견되었다. 7개 위치에서 대표적인 시료를 채취하였으며 이 오염된 토사의 지반공학적 안정성을 확인하기 위하여 중금속 및 유류에 대한 환경공학적 검토가 이루어졌다. 2개 위치의 토사는 유류로 심하게 오염되어 있어 현장의 특정지역으로 반출하여 폐기해야 하는 것으로 판단하였다. 토양오염우려수준인 1개 위치의 토사에 대하여 성토재로서의 활용가능성을 확인하기 위하여 성토 안정성에 대한 해석을 수행하였으며 성토재로 사용할 수 있는 것으로 판단하였다.

  • PDF

식물성장근권 미생물 적용에 의한 Zn 오염 논토양 식물상정화증진기법 적용에 관한 연구 (A Study on the Application of Enhanced Phytoremediation with Plant Growth Promoting Rhizobacteria for Zn Contaminated Rice Paddy Soil)

  • 김태성;최상일;양재규;이인숙;배범한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권3호
    • /
    • pp.15-26
    • /
    • 2010
  • The contaminated soils near abandoned mine area can threaten human's health and natural ecosystems through multiple pathways. Remediation of contaminated soil using physicochemical technologies are expensive and destructive of soil environments. On the other hand, environmentally friendly approach that maximize biological remediation, that is, phytoremediation, attracts attention as a low carbon green growth technology. This research is a field demonstration study, focused on the enhanced phytoremediation by bioaugmenting PGPR(Plant Growth Promoting Rhizobacteria)that is helpful on the growth of and heavy metal removal by Echinochloa frumentacea, at a Zn contaminated paddy soil near SamBo mine at Hwasung, Kyunggi. The results showed that the zinc removal by the plant with PSM(Phosphate Solubilizing Bacteria), a kind of PGPR, was three times higher than that by the control. The results are valuable as it is a result from the field-scale technology demonstration. The results also implies that application of PGPR can enhance heavy metal removal from contaminated soil in full scale phytoremediation using Echinochloa frumentacea.

중금속 오염토의 Electrokinetic 정화 처리시 pH 발현과 납 제거의 전극 간 특성 (The Characteristics of pH Variations and Lead transport during Electrokinetic Remediation of soil Contaminated by Heavy Metal)

  • 한상재;김수삼
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제6권4호
    • /
    • pp.13-23
    • /
    • 2001
  • 본 연구는 중금속 오염지반의 정화를 목적으로, Electrokinetic(EK) 기법을 적용 할 때 지반 내에서 pH와 오염물 분포특성을 알아보았다. 시료 내에서의 EK 처리로 인한 납 제거 효과를 살펴본 결과 1V/cm의 전압경사 하에서 납은 음극으로 이동하여, 전극 간 시료의 80%정도 영역에서 제거율은 대략 75% 정도에 이르렀다. 그러나 이동된 납은 대부분이 음극영역에 침전되어 궁극적으로 음극수로 배출되어 제거되는 납의 양은 미미하였다. 이때, EK 정화처리는 시료의 대부분인 80% 정도에서 토양환경보전법 상의 규준치를 만족할 수 있으나, 음극쪽 20%지역은 별도의 향상기법을 적용하여 처리하는 기법이 필요하다.

  • PDF

오염물질 이동 차단을 위한 동결차수벽 형성에 관한 실험적 연구 (Experimental Study on Freezing Soil Barrier Wall for Contaminant Transfer Interception)

  • 신은철;김진수
    • 한국지반신소재학회논문집
    • /
    • 제10권2호
    • /
    • pp.29-34
    • /
    • 2011
  • 본 연구에서는 유류나 각종 비수용성 오염물질(DNAPL)로 오염된 지반에 인공동결공법을 이용한 차수벽을 형성하고 지하수의 이동으로 인한 오염물질의 확산 방지 효과를 확인하기 위한 초기연구로 인공동결공법을 통한 동결차수벽을 형성하기 위하여 모형실험을 수행하였다. 동결차수벽 형성의 확인을 위하여 실험조건에 따른 동결범위와 동결토의 강도를 분석하였다. 동결범위를 확인하기 위한 실험조건은 포화도가 80%, 90%인 표현을 실트를 대상으로 하였다. 또한, 동결토의 강도특성은 다짐도와 포화도를 변경하여 동결을 실시하였고, 일축압축강도 실험을 통하여 확인하였다.

(구)장항제련소 주변 부지 매입구역 비소 오염토양에 대한 중성 인산염 토양세척법의 적용가능성 평가 (Applicability of Soil Washing with Neutral Phosphate for Remediation of Arsenic-contaminated Soil at the Former Janghang Smelter Site)

  • 임진우;김영진;양경;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권4호
    • /
    • pp.45-51
    • /
    • 2014
  • In accordance with the view on remediated soil as a resource, this study assessed the applicability of soil washing with the neutral phosphate for remediation of arsenic (As)-contaminated soil. Three soil samples of different land uses (i.e., rice paddy, upland field and forest land) were collected from the study site, and the aqua regia-extractable As concentrations were 59.2, 30.8 and 53.1 mg/kg, respectively. Among the neutral phosphate reagents, ammonium phosphate showed the highest As washing efficiency. The optimized washing condition was 2-hr washing with 0.5M ammonium phosphate solution (pH 6) and soil to liquid ratio of 1 : 5. The extraction efficiencies of As did not guarantee the residual soil As concentrations to satisfy the Korea soil regulatory level (i.e., Worrisome level) in the three soil samples. To enhance washing efficiency, the As-contaminated soil was submerged in washing solution (1 : 1, w/v) for 24 hr and 1-hr washing with 0.5M ammonium phosphate solution was tested. As extraction efficiencies of 36.1 (rice paddy), 21.4 (upland field) and 26.4% (forest land) were attained, which satisfied the Worrisome level for Region 1 (25 mg/kg of As) in rice paddy, but not in upland field and forest land.

계면활성제 (SDS, Tween 80)와 HCl을 활용한 중금속 오염 토양의 복원 (HCl, Surfactant (SDS, Tween 80) Enhanced Remediation of Contaminated Soil with Lead and Copper)

  • 조미영;현재혁;백정선
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1999년도 추계학술발표회
    • /
    • pp.12-15
    • /
    • 1999
  • Soils collected from an agricultural field in Youngdong, Chungbuk province were intentionally: contaminated with lead and copper. The efficiencies of soil washing with HCl, SDS and Tween 80 were investigated through the column mode experiments. Washing with 0.1 N HCl obtained the best result for lead and copper removal (95.04 %, 95.94 %). In case of SDS, lead and copper removal rate was such poor as 7.1 % and copper was 24.04 %, respectively. Meanwhile, washing of contaminated soil with Tween 80, did not show any significant removal effect. It was found that the washing efficiency was dependent on pH of washing agent.

  • PDF

폐금속광산 지역의 비소오염토양 처리를 위한 선별 기술 적용 (Application of a Soil Separation System for the Remediation of Arsenic Contaminated Soil in a Metal Mining Area)

  • 박찬오;김종원;박준형;이영재;양인재;이재영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권5호
    • /
    • pp.56-64
    • /
    • 2013
  • After the law has been enacted for the prevention and recovery of mining damage in 2005, efforts of remediation have been started to recover heavy metal contaminated soils in agricultural land near mining sites. As part of an effort, the upper part of cultivation layer has been treated through covering up with clean soil, but the heavy metal contamination could be still spreaded to the surrounding areas because heavy metals may be remained in the lower part of cultivation layers. In this study, the most frequently occurring arsenic (As) contamination was selected to study in agricultural land nearby an abandoned metal mining site. We applied separation technologies considering the differences in the physical characteristics of soil particles (particle size, density, magnetic properties, hydrophobicity, etc.). Based on physical and chemical properties of arsenic (As) containing particles in agricultural lands nearby mining sites, we applied sieve separation, specific gravity separation, magnetic separation, and flotation separation to remove arsenic (As)-containing particles in the contaminated soil. Results of this study show that the removal efficiency of arsenic (As) were higher in the order of the magnetic separation, flotation separation, specific gravity separation and sieve separation.