• Title/Summary/Keyword: As 및 중금속

Search Result 1,451, Processing Time 0.03 seconds

Growth and Heavy Metal Absorption Capacity of Aster koraiensis Nakai According to Types of Land Use (토지이용 형태별 벌개미취의 생육 및 중금속 흡수능)

  • Ju, Young-Kyu;Kwon, Hyuk-Jun;Cho, Ju-Sung;Shin, So-Lim;Kim, Tae-Sung;Choi, Su-Bin;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.24 no.1
    • /
    • pp.48-54
    • /
    • 2011
  • This study was performed to analyze the possibility of using Korean native Aster koraiensis Nakai for phytoremediation at various fields. A. koraiensis was cultivated at paddy, upland and forest soils contaminated with heavy metals. After 8 weeks of cultivation, and growth and its absorbing capacity of heavy metals were analyzed. The results showed that A. koraiensis was grown well even at the soil highly contaminated with heavy metals, which means it has a tolerance to heavy metals. As analysis results of arsenic, cadmium, copper, lead and zinc contents absorbed from various soils contaminated with heavy metals, heavy metal absorbing capacity of A. koraiensis was depending on the heavy metal contents in the soils and soil property. In case of arsenic, cadmium and copper, heavy metal accumulation capacities of Aster koraiensis were much influenced by contents of heavy metals in the soils. Absorbing capacity of plants was increased when heavy metal contents in the soils were high. Lead absorbing capacity was depending more on soil property than lead contents in the soil, and was great at sandy soil of forest. Zinc absorbing capacity was influenced by both soil properties and Zn contents in the soil, was increased at paddy soil contaminated with high concentrations of heavy metals and upland soils. In general, A. koraiensis had a tolerance to heavy metals and showed great absorbing capability of heavy metals. So A. koraiensis can be used as a good landscape material for phytoremediation at various soils contaminated with heavy metals.

Influence of Competing Ions and Metabolic Inhibitors on Heavy Metal Accumulation in the Cell of Heavy Metal-Tolerant Microorganisms (중금속내성균의 중금속 축적에 미치는 경쟁이온 및 대사저해제의 영향)

  • Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.142-148
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri possessing the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The effect of competing ions and metabolic inhibitors on heavy metal accumulation in the cells was investigated. Heavy metal accumulation into cells was drastically decreased in the presence of competing cation, $Al^{3+}$, and also decreased, at a lesser extent, in the presence of competing anions, $CO_3\;^{2-}$ and $PO_4\;^{2-}$. But heavy metal accumulation was not influenced generally in the presence of the other rations and anions. The accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was remarkably decreased in the presence of metabolic inhibitors, but the accumulation of Pb by Pb-tolerant microorganism was little affected in the presence of metabolic inhibitors. These results suggested that the accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was concerned with the biological activity depending on energy, and the accumulation of Pb by Pb-tolerant microorganism depended on not the biological activity but the physical adsorption on the cell surface. Each heavy metal-tolerant microorganism also exhibited some ability to accumulate the other heavy metals in solution containing equal concentrations of cadmium, lead, zinc and copper, when measured at 48 hours after inoculation of the microorganisms, but the accumulation rates were somewhat low as compared to the accumulation rates of heavy metal fitting to each tolerance. These results suggested that the accumulation of each heavy metal by each heavy metal-tolerant microorganism was a selective accumulation process.

  • PDF

장풍광산 폐광석의 중금속오염 연구와 pH변화가 중금속의 용출거동에 미치는 영향평가

  • 이인경;이평구;최상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.385-388
    • /
    • 2003
  • 폐광석에 함유되어 있는 총중금속함량을 측정하기 위한 전함량분석과 중금속을 다량 함유한 폐광석이 산성환경에 노출되어 있을 경우 중금속의 지화학적 거동을 파악하기 위해 산도를 변화시키면서 용출실험을 실시하였다. 전함량분석과 용출실험을 종합한 결과, 중금속 및 미량원소의 용출거동 특성을 크게 As-Co-Fe 형태와 Cu-Mn-Cd-Zn형태와 Pb로 구분할 수 있었다. As-Co-Fe의 용출특성은 약산성의 환경에서는 용출이 미약하나, 최종 pH 1.5이하의 강산성환경에서는 용출량이 급격하게 증가하며, Cu-Mn-Cd-Zn형태에서는 최초로 용해되는 pH가 5.0-3.0으로 As-Co-Fe 보다 다소 높았다. Pb는 다른 형태에 비해 상당히 적게 용출되었다 최종 용출된 함량과 관계없이 초기 용출이 발생하는 pH값을 기준으로 한 각 원소의 상대적인 이동성은 Mn =Zn>Cd=Cu>>Fe=Co>As>Pb 순서이며, 산성비는 Zn, Mn 및 Cu를 쉽게 용출시켜 이동도를 증가시킬 것으로 판단된다.

  • PDF

Distribution of Heavy Metal in the Cell Components of Heavy Metal-Tolerant Microorganisms (중금속내성균의 세포내 중금속 분포)

  • Cho, Ju-Sik;Lee, Won-Kyu;Choi, Hyoung-Sub;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.55-60
    • /
    • 1997
  • Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri which possessed the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The distribution of heavy metal in the cell components, and amino acid compositions, was investigated. The distribution of heavy metal in the cell fractions of each heavy metal-tolerant microorganism grown for 20 hours in the basal medium containing 100mg/l of each heavy metal was investigated. In the case of cadmium-tolerant P. putida, lead-tolerant P. aeruginosa and copper-tolerant P. stutzeri, approximately $50{\sim}60%,\;30{\sim}40%$ and $10{\sim}17%$ of each heavy metal absorbed were distributed to cell wall, cell membrane and cytoplasm fractions, respectively. In the case of zinc-tolerant P. chlororaphis, approximately 32%, 55% and 13% of zinc were distributed to cell wall, cell membrane and cytoplasm fractions, respectively. These results indicated that the cell wall was a major adsorbing fraction of cadmium, lead and copper, and the cell membrane was that of zinc. Total amino acid content per gram of the cell grown in the culture media with heavy metal was higher than that of the cell grown in the culture media without heavy metal, and the content of acidic amino acids, such as aspartic acid(Asp.+Asn.) and glutamic acid(Glu.+Gln.) was higher than that of basic amino acids, such as histidine, lysine and arginine.

  • PDF

Comprehensive Assessment of Thermal Behavior of Heavy Metal Elements in Coal (석탄에 존재하는 중금속원소들의 고온거동에 관한 고찰)

  • 김형택;최병철;권혁보
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.499-504
    • /
    • 1999
  • 본 논고에서는 석탄의 화학조성, 입도 및 광물질 종류들에 따라 중금속 선분들의 고온 거동을 해석하여 대규모 석탄화력발전소의 중금속화합물 배출규제기준결정과 관련된 기초자료를 제공하고자 시도하였다. 먼저 , Sb. Ca, Pb, Ni, As, Cr, Mg, Se, Be Co, Hg,Mn, Cd Ti, Zn 등 원소들의 휘발성을 석탄에 포함된 광물질의 고온거동을 조사하여 분석한 결과 중금속물질 배출정도는 광물질들의 고온상 기체/고체 분포 여부 및 광물질들의 고온에서의 변이 과정과 밀접한 관계가있는 것으로 인식되었다. 또한 , 반응후 중금속물질들의 비산재와 슬랙에의 존재분포를 입도별로 해석하였으며, 그 결과는 EF enrichment factor를 이용하여 해석하였다.

  • PDF

Heavy Metal Contents In Tissues of Carassius auratus In Andong and Imha Reservoir (안동.임하호에 서식하는 붕어(Carassius auratus) 조직 내 중금속 함량)

  • Kim, Jeong-Sook;Shin, Myung-Ja;Lee, Jong-Eun;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1562-1567
    • /
    • 2009
  • Heavy metal contamination levels in Andong reservoir and Imha reservoir were measured with heavy metal contents in both water and sediment, and analyzed with heavy metal accumulation level in inhabitant fish, Carassius auratus, using an inductively coupled plasma spectrometer and an atomic absorption spectrometer. High levels of heavy metal contents in water, sediment and the tissues of C. auratus were detected. Likewise, relatively high levels of As were detected in water and sediment from Andong reservoir. In addition, higher levels of Cr, Cu, Cd and As content were detected in muscle and bone tissues of fish from Andong reservoir than those from Imha reservoir. As a result, the heavy metal content of water, sediment and inhabitant fish, C. auratus, in Andong reservoir was higher than Imha reservoir. We proposed that heavy metal contamination in water and inhabitant fish is attributed to various metals derived from abandoned mines and farmlands that are upstream of Andong reservoir.

Heavy Metal Pollutions of the Top Soil Plants and Stream Water from the Serpentinite Area Chungnam (충남 사문암 지역 토양 식물체 및 계류의 중금속 오염)

  • 김명희
    • Korean Journal of Environment and Ecology
    • /
    • v.14 no.2
    • /
    • pp.119-126
    • /
    • 2000
  • 충남 사문암 지역인 광천, 홍성, 백동, 대흥 및 유구지역의 토양, 식물체(참억새, 쑥, 리기다소나무) 및 지표수, 갱내수의 중금속 함량을 분석한 결과 사문암 토양의 Ni, Cr 및 Co 원소가 변성암 토양에 비하여 10~13배높았으며 이 원소들이 serpentine factor로 생각된다 사문암 지역간에는 이들원소의 차이가 뚜렷하지 않았다 변성암 토양식물에서보다 사문암 토양 식물에서 Ni, Cr, Co등이 높았다 리기다소나무의 원소 흡수량은 비교적 낮았고 3종 식물에서 대체로 뿌리의 원소 함량이 지상부 함량보다 높았으며 사문암 토양에서는 Ni, Cr, Co, Mo, Sc, As 및 Fe 원소들이 쑥보다 참억새에서 높았다 사문암 토양에서 생육하는 식물체 지상부의 생물학적 흡수계수는 Ni, Cr, Co, Zn, Sc, As 및 Fe 원소는 참억새에 높고Zn은 쑥에서 높았다,. 사문암 토양에서 뿌리로부터 지상부로의 원소 전이는 Ni, Cr, Co, Zn As 및 Fe 원소에 대해 쑥에서 높았고 Mo와 Sc 원소는 리기다소나무에서 높았다. 따라서 사문암 토양에서 참억새가 중금속의 흡수율은 높고 중금속에 대한 내성은 강할 것으로 사료된다 대흥지역에서 광산의 오염이 지표수 및 갱내수의 Ni. Cr, Co, Zn 및 Fe 등의 원소 농도를 높게 하였으며 비오염 계류는 오염계류의 원소 농도를 희석시켰다.

  • PDF

Comparison of the Heavy Metal Concentrations of the Soils and Plants at the Serpentine and Rhyolite Resions in Ulsan City (울산시의 사문암 및 유문암 지역 표토와 식물체의 중금속 함량 비교)

  • 김명희;민일식;송석환
    • Korean Journal of Environment and Ecology
    • /
    • v.13 no.2
    • /
    • pp.176-183
    • /
    • 1999
  • 울산지역의 사문암과 유문암 토양 및 쑥과 참억새의 중금속 함량을 비교하기 위하여 중금속 농도를 분석한 결과 사문암 풍화토의 Ni, Cr 및 Co 함량은 매우 높았다. Ni은 1,483~1.524ppm, Cr은 372~435ppm, Co는 68~79ppm였으며, 유문암 풍화토의 Zn 함량은 222ppm으로 사문암 풍화토보다 높았다. 사문암 풍화토에서 생육하는 쑥의 중금속 함량은 Ni이 108~195ppm. Cr이 135~180ppm, Co가 10.2~22.5ppm으로 유문암 풍화토의 쑥보다 높았고, Zn은 유문암 토양 쑥에서 높았다. 참억새의 경우는 Ni, Cr, Co, As, Se, Mo 및 Fe 가 사문암 토양에서 높았고, Zn 흡수는 유문암 토양에서 많았다. 쑥의 중금속 함량은 대체적으로 지상부가 지하부보다 높았으나, 참억새의 경우는 지하부가 높은 경향을 나타내었다. 토양과 식물체(쑥과 참억새)의 중금속 함량을 비교해 보면 Ni, Cr, Co, As, Sc, Mo 및 Fe의 함량은 토양의 식물체보다 높았으나, 유문암 토양에 있는 쑥의 Zn 흡수는 토양보다 다소 높았다. 식물체의 Fe:Ni 비율은 유문암 토양보다는 사문암 토양이, 참억새보다는 쑥이 낮게 나타났다.

  • PDF

Application of Statistical Model and Thermodynamic Analysis on Sorption of Heavy Metals by Bentonite (벤토나이트의 중금속 흡착에 대한 통계모델의 적용 및 열역학적 해석)

  • 정찬호;김수진
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.203-214
    • /
    • 2002
  • The statistical model was introduced to satisfy various experimental condition on the sorption of heavy metals (Pb, Cu, Cd, and Zn) by bentonite. The Box-Behnken model designed statistically was applied to determine relative impact among three variables such as pH, HCO$_3$ contents and heavy metal concentrations on the sorption. The SAS program was used to obtain the statistical solution. The statistical surface response analysis indicates that initial concentration of heavy metals and pH have an important effect on the sorption, and bicarbonate is not a serious variable. The sorption capability about heavy metals of bentonite is in the order of Pb>Cu>Zn>Cd. The precipitation as hydroxyl and carbonate complexes of heavy metals was thermodynamically analyzed as major mechanism of sorption under alkaline pHs and high bicarbonate solution. It was found that there is a little difference between the model prediction on the precipitation of heavy metals and the results of batch sorption experiment. The thermodynamic data of the programs have to revise to obtain the best fit condition between the model prediction and the experimental results.

Comparison of heavy metal uptake of LID and roadside plants (도로변 및 LID 시설 식재 식물의 중금속 축적량 비교)

  • Lee, YooKyung;Choi, Hyeseon;Reyes, Nash Jett;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.44-53
    • /
    • 2021
  • Urban stormwater runoff contains heavy metals that accumulate in on-site treatment systems, thus resulting to facility deterioration and maintenance problems. In order to resolve these problems, low impact development (LID) technologies that promote natural materials circulation are widely used. LID facilities are capable of treating heavy metals in the runoff by means of plant uptake; however, the uptake or phytoremediation capabilities of plants have not been studied extensively, making it difficult to select the most suitable plant species for a certain LID design. This study investigated the vegetative components of an LID facility, roadside plants, and plants in landscape areas with different heavy metal exposure and frequency to determine the uptake capabilities of different plant species. The plants harvested inside the LID facilities and roadsides with high vehicular traffic exhibited greater heavy metal concentrations in their tissues as compared with the plants in landscape areas. Generally, the accumulation of heavy metals in the plant tissues were found to be influenced by the environmental characteristics (i.e. influent water quality, air pollution level, etc.). Dianthus, Metasequoia, Rhododendron lateritium, and Mugwort were found to be effective in removing Zn in the urban stormwater runoff. Additionally, Dianthus, Metasequoia, Mugwort, and Ginkgo Biloba exhibited excellent removal of Cu. Cherry Tree, Metasequoia, and mugwort efficiently removed Pb, whereas Dianthus was also found to be effective in treating As, Cr, and Cd in stormwater. Overall, different plant species showed varying heavy metal uptake capabilities. The results of this study can be used as an effective tool in selecting suitable plant species for removing heavy metals in the runoff from different land use types.