• Title/Summary/Keyword: As₄O/sub 6/

Search Result 1,793, Processing Time 0.03 seconds

Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation

  • Arunachalam, Maheswari;Yun, Gun;Lee, Hyo Seok;Ahn, Kwang-Soon;Heo, Jaeyeong;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.424-432
    • /
    • 2019
  • Planar BiVO4 and 3 wt% Mo-doped BiVO4 (abbreviated as Mo:BiVO4) film were prepared by the facile spin-coating method on fluorine doped SnO2(FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO4 film. After annealing at a high temperature of 450℃ for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al2O3 layer, the ultra-thin Al2O3 layer with a thickness of approximately 2 nm was deposited on BiVO4 film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO4 and Mo:BiVO4 films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al2O3 layer, the Al2O3 coated BiVO4 (Al2O3/BiVO4) film exhibited enhanced photoelectrochemical performance in 0.5 M Na2SO4 solution (pH 6.5), having higher photocurrent density (0.91 mA/㎠ at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as VRHE) than BiVO4 film (0.12 mA/㎠ at 1.23 VRHE). Moreover, Al2O3 coating on the Mo:BiVO4 film exhibited more enhanced photocurrent density (1.5 mA/㎠ at 1.23 VRHE) than the Mo:BiVO4 film (0.86 mA/㎠ at 1.23 VRHE). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO4 film and Al2O3/Mo:BiVO4 film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (VFB) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al2O3 coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al2O3 layer.

Centella asiatica and Asiaticoside Regulate H2O2-induced Cellular Inflammation via Mitochondrial Respiration and the TLR4 Pathway (병풀(Centella asiatica) 및 아시아티코사이드는 미토콘드리아 호흡 및 TLR4 경로를 통해 H2O2 유도 세포염증 조절)

  • Ji, Juree;Nam, Young sun;Kang, Sang Mo
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2021
  • This study determined the effects of Centella asiatica leaf on H2O2 induced cell cycle arrest, mitochondrial activity, and proinflammatory cytokine production in human dermal fibroblast (HDF) cells. We used an 80% methanol extract of C. asiatica, its ethyl acetate fraction, and asiaticoside, the major constituent of C. asiatica. The C. asiatica extract, its ethyl acetate fraction, and asiaticoside attenuated G1 cell cycle-arrest and the apoptotic effect caused by H2O2-induced oxidative stress. The cells treated with C. asiatica extract, its ethyl acetate fraction, and asiaticoside secreted lower levels of TNF-α and IL-6. The antioxidant effect of asiaticoside was higher than that of C. asiatica extract and its ethyl acetate fraction. Treatment with C. asiatica extract, its ethyl acetate fraction, and asiaticoside also increased the mitochondrial membrane potential and restored normal mitochondrial morphology. Following H2O2 stress induction, cells treated with C. asiatica extract, its ethyl acetate fraction, and asiaticoside showed increased mitochondrial oxygen consumption rates and decreases in the TLR4-MyD88-TRAF6-p65 pathway activity. These findings suggest that C. asiatica extract, its ethyl acetate fraction, and asiaticoside have antioxidant and anti-inflammatory effects, as well as the ability to control the mitochondrial activities of HDF cells.

X-ray Photoelectron Spectroscopy Study of LaFeO3 Powders Synthesized by Solution Combustion (용액연소법으로 제조한 LaFeO3의 XPS 특성)

  • Hwang, Yeon;Kang, Dae-Sik;Park, Mi-Hye;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.313-317
    • /
    • 2008
  • [ $LaFeO_3$ ] powders were synthesized using a method involving solution combustion, and the surface properties of these powders were examined by x-ray photoelectron spectroscopy. As the amount of fuel increased during the synthesis, the $LaFeO_3$ powders became amorphous with a large plate-like shape. It was found that the O 1s spectra were composed of two types of photoelectrons by deconvolutioning the spectra. Photoelectrons with higher binding energy come from adsorbed oxygen ($O^-$) whereas those with lower energy come from lattice oxygen ($O^{2-}$). The ratio of adsorbed and lattice oxygen increased as the ratio of the fuel and nitrate (${\Phi}$) increased. The binding energy of both types of oxygen increased as ${\Phi}$ increased due to the formation of carbonates.

Dependence of Ferroelectric Properties on the Crystalline Phases of HoMnO3 Thin Film (HoMnO3 박막의 강유전 특성의 결정상 의존성)

  • Kim, Eung-Soo;Kang, Dong-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.394-399
    • /
    • 2006
  • Ferroelectric $HoMnO_3$ thin films were deposited on the Si(100) substrate at $700^{\circ}C$ for 2 hrs by metalorganic chemical vapor deposition (MOCVD) and post-annealed at 850oC by rapid thermal process (RTP). Electrical properties and crystalline phases of $HoMnO_3$ thin films were investigated as a function of postannealing time. Single phase of hexagonal symmetry with c-axis preferred orientation was obtained from $HoMnO_3$ thin films post-annealed at $850^{\circ}C$ for 5 min, while the c-axis preferred orientation was decreased with the increase of post-annealing time, and the thin films post-annealed at $850^{\circ}C$ for 15 min showed the mixture phases of hexagonal and orthorhombic symmetry. P-E (Polarization-Electric field) hysteresis loop of ferroelectric $HoMnO_3$ thin films was observed only for the single phase of hexagonal symmetry, but that was not observed for the mixture phases of the hexagonal and orthorhombic symmetry, which was discussed with the bond valence of Mn ion of crystalline phase. Leakage current density was dependent on the microstructure of thin films as well as the change of valence of Mn ion.

Non-isothermic Analysis of Reaction Rate for the Thermal Decomposition of Na2B4O7·10H2O (Na2B4O7·10H2O 열분해 반응속도의 비등온해석)

  • Choi, Ho-Sang;Park, Young-Tae;Lee, Soo-Kag
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1029-1033
    • /
    • 1997
  • Fundamental research of non-isothermic analysis of reaction rate has been carried out for the heat storage system using the thermal decomposition of $Na_2B_4O_7{\cdot}10H_2O$. It was found that the equilibrium temperature of the thermal decomposition reaction was lowered less than 373K in $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ system, but the heat efficiency was unchanged. The initiation temperature of the reaction was varied from low to high temperature region with heating rate. The reaction order of the dehydration reaction by the thermal decomposition was appeared to be 0.67 by non-isothermic analysis, thereby $Na_2B_4O_7{\cdot}10H_2O$ may be used as a hemical heatstorage material.

  • PDF

Evaluating thermal stability of rare-earth containing wasteforms at extraordinary nuclear disposal conditions

  • Kim, Miae;Hong, Kyong-Soo;Lee, Jaeyoung;Byeon, Mirang;Jeong, Yesul;Kim, Jong Hwa;Um, Wooyong;Kim, Hyun Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2576-2581
    • /
    • 2021
  • The thermal stability and crystallization behaviors of La2O3 containing B2O3-CaO-Al2O3 glass waste forms were investigated to evaluate the stability of waste form during emergencies in deep geological disposal. For glasses containing 15% La2O3, LaBO3 phases were observed as major crystals from 780 ℃ and exhibited needlelike structures. Al, Ca, and O were homogeneously distributed throughout the entire specimen, while some portions of B and La were concentrated in some parts. By differential thermal analysis at various heating rates, the activation energy for grain growth and the crystallization rate of LaBO3 were calculated to be 12.6 kJ/mol and 199.5 kJ/mol, respectively. These values are comparable to other waste forms being developed for the same purpose.

Effect of Dispersion Stability of Particles on Detergency of Particulate Soil(Part 1) - The Dispersion Stability of α-Fe2O3 Particles in the Nonyl Phenol Polyoxyethylene Ether Solution - (입자의 분산안정성이 고형오구의 세척성에 미치는 영향(제1보) - Nonyl Phenol Polyoxyethylene Ether 용액 내에서 α-Fe2O3 입자의 분산안정성 -)

  • Kang, In-Sook
    • Fashion & Textile Research Journal
    • /
    • v.4 no.1
    • /
    • pp.86-91
    • /
    • 2002
  • To estimate dispersion stability of particles, suspending power and particle size were examined as functions of pHs, surfactants, electrolytes and ionic strengths using ${\alpha}-Fe_2O_3$ particle as the model of particulate soil. Suspending power and particle size were determined by UV-Vis spectrumeter and by light scattering using the polarization ratio method, respectively. The suspending power was relatively high with polyanion electrolytes and was low with neutral salts. The suspending power was biphasis, minimum pH 6~7, and the effect of surfactant on the suspending power was insignificant. Generally suspending power increased with decreasing the particle size governed aggregation of dispersed particles regardless of solution conditions. Hence the suspending power was inversely related to the particle size.

Synthesis and Characteristic Evaluation of Downward Conversion Phosphor for Improving Solar Cell Performance (태양전지 성능향상을 위한 하향변환 형광체의 합성 및 특성평가)

  • Jae-Ho Kim;Ga-Ram Kim;Jin-To Choi;Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.523-528
    • /
    • 2023
  • The applicability as a material to improve solar cell performance was reviewed by synthesizing a phosphor that emits red wavelengths by a liquid synthesis method using a metal salt aqueous solution and a polymer medium as a starting material. An aqueous solution was prepared using nitrate of metals such as Ca, Zn, Al, and Eu, and a precursor impregnated with starch, a natural polymer, was sintered to synthesize CaZnAlO:Eu phosphor powder. The surface structure and composition analysis of the synthesized CaZnAlO:Eu phosphor powder were analyzed by scanning electron microscope(SEM) and energy-dispersed X-ray spectroscopy(EDS). The crystal structure of CaZnAlO:Eu phosphor particles was analyzed by an X-ray diffraction analyzer (XRD). As a result of measuring the photoluminescence(PL) characteristics of the phosphor, it was confirmed that a red phosphor with a light emitting wavelength of 650-780nm was successfully synthesized. According to SEM and EDS analysis, the synthesized Ca14Zn6Al9.93O35:Eu3+0.07 phosphor powder has a uniform particle size, and Eu ions used as an activator are present. The synthesized CZA:Eu3+ phosphor can be used as a material that can increase the light absorption efficiency of the solar cell by converting ultraviolet or visible light down conversion into a wavelength in the near-infrared region.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Effect of Substrate Temperature on the Optical and Electrical Properties of ITO Thin Films deposited on Nb2O5/SiO2 Buffer Layer (기판온도가 Nb2O5/SiO2 버퍼층위에 증착한 ITO 박막의 광학적 및 전기적 특성에 미치는 영향)

  • Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.986-991
    • /
    • 2016
  • In this study, we prepared ITO thin films on $Nb_2O_5/SiO_2$ double buffer layer using DC magnetron sputtering method and investigated electrical and optical properties with various substrate temperatures (room temperature ~ $400^{\circ}C$). The resistivity showed a decreasing tendency, because crystallinity has been improved due to the enlarged grain size with increasing substrate temperature. ITO thin film deposited at $400^{\circ}C$ showed the most excellent value of resistivity and sheet resistance as $3.03{\times}10^{-4}{\Omega}{\cdot}cm$, $86.6{\Omega}/sq.$, respectively. In results of optical properties, average transmittance was increased but chromaticity ($b^*$) was decreased in visible light region (400~800nm) with increasing substrate temperature. Average transmittance and chromaticity ($b^*$) of ITO thin film deposited at $400^{\circ}C$ exhibited significantly improved results as 85.8% and 2.13 compared to 82.8% and 4.56 of the ITO thin film without buffer layer. Finally, we found that ITO thin film introduced $Nb_2O_5/SiO_2$ double buffer layer has a remarkably improved optical property such as transmittance and chromaticity due to the index matching effect.