• 제목/요약/키워드: Arylsulfate sulfotransferase

검색결과 5건 처리시간 0.021초

해모필루스 K-12가 생산하는 황산전이효소의 고정화 (Immobilization of Arylsulfate Sulfotransferase Obtained from Haemophilus K-12)

  • 이남수;김병택;최승기;김동현
    • 약학회지
    • /
    • 제42권1호
    • /
    • pp.53-58
    • /
    • 1998
  • A novel type of sulfotransferase, arylsulfate sulfotransferase (EC 2.8.2.22) purified from Haemophilus K-12, an intestinal bacterium of a mouse, was immobilized onto AH-S epharose 4B, CH-Sepharose 4B and DEAE-celluose. The enzyme was stabilized for storage more markedly by covalent immobilization onto AH-Spharose 4B or CH-Sepharose 4B and by adsorptive immobilization onto DEAE-cellulose than the free enzyme. The optimal pH and acceptor substrate specificity of immobuized enzyme were similar to those of the free enzyme.

  • PDF

Role of Disulfide Bond of Arylsulfate Sulfotransferase in the Catalytic Activity

  • Kwon, Ae-Ran;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • 제28권5호
    • /
    • pp.561-565
    • /
    • 2005
  • Bacterial arylsulfate sulfotransferase (ASST) catalyzes the transfer of sulfate group from a phenyl sulfate ester to a phenolic acceptor. The promoter region and the transcripti on start sites of Enterobacter amnigenus astA have been determined by primer extension analysis. Northern blot analysis resolved two mRNA species with lengths of 3.3 and 2.0 kb, which correspond to the distances between the transcriptional initiation sites and the two inverted repeat sequences (IRSs). By length, the 3.3 kb RNA could comprise the three-gene (astA with dsbA and dsbB) operon. ASST has three highly conserved cysteine residues. Reducing and non-reducing SDS-PAGE and activity staining showed that disulfide bond is needed for the activity of the enzyme. To identify the cysteine residues responsible for the disulfide bond formation, a series of Cys to Ser mutants has been constructed and the enzymatic activity was measured. Based on the results, we assumed that the first cysteine (Cys349) might be involved in disulfide bond mainly with the second cysteine (Cys445) and result in active conformation.

Cloning, Sequence Analysis, and Characterization of the astA Gene Encoding an Arylsulfate Sulfotransferase from Citrobacter freundii

  • Kang, Jin-Wook;Jeoung, Yeon-Joo;Kwon, Ae-Ran;Yun, Hee-Jeong;Kim, Dong-Hyun;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • 제24권4호
    • /
    • pp.316-322
    • /
    • 2001
  • Arylsulfate sulfotransferase (ASST) transfers a sulfate group from a phenolic sulfate ester to a phenolic acceptor substrate. In the present study, the gene encoding ASST was cloned from a genomic library copy of Citrobacter freundii, subcloned into the vector pGEM3Zf(-) and sequenced. Sequencing revealed two contiguous open reading frames (ORF1 and ORF2) on the same strand and based on amino acid sequence homologyl they were designated as astA and dsbA, respectively. The amino acid sequence of astA deduced from C. freundii was highly similar to that of the Salmonella typhimurium, Enterobacter amnigenus, Klebsiella, Pseudomonas putida, and Campylobacter jejuni, encoded by the astA genes. However, the ASST activity assay revealed different acceptor specificities. Using p-nitrophenyl sulfate (PNS) as a donor substrate, $\alpha$-naphthol was found to be the best acceptor substrate, followed by phenol, resorcinol, p-acetaminophen, tyramine and tyrosine.

  • PDF

Distribution of Bacteria with the Arylsulfate Sulfotransferase Activity

  • Baek, Moon-Chang;Kwon, Ae-Ran;Chung, Young-Ja;Kim, Byong-Kak;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • 제21권4호
    • /
    • pp.475-477
    • /
    • 1998
  • This study is to predict the possible roles of the aryisulfate sulfotransferase (ASST) in the microorganism. At first we studied the spectrum of a distribution of the ASST enzyme through about 1,300 bacteria and the several selected strains were compared with Klebsiella K-36 previously reported in the level of DNA homology using the Southern blot method. From this study, we could predict that this enzyme would not exist in specific bacteria and it might not be a critical enzyme for the life of bacteria.

  • PDF