• Title/Summary/Keyword: Arundinella hirta

Search Result 66, Processing Time 0.022 seconds

Studies on the soil - erosion- control effect of underground growth of several grasses used to rodside vegetation (도로비탈면 녹화에 사용되는 주요 초목식물의 지하부 생육이 토양안정에 미치는 효과에 관한 연구)

  • 김남춘
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.18 no.2
    • /
    • pp.45-55
    • /
    • 1990
  • This study describes on the erosion control effects of the several grasses and its mixtures for the man-made slopes. The grasses used for this experiment include cool-season grasses such as Festuca rubra L. (Creeping redfescue), Poa pratensis L. (Kentucky bluegrass), Lolium perenne L. (Perenial ryegrass), Lolium multiflorum LAM. (Italian ryegrass), Festuca arundinacea Schrel. (Tall fescue), and warm-season grasses such as Eragrostis curvula Schrad. (Weeping lovegrass), Zoysia japonica Steud. (Zoysiass) and native plants (Artemisia princeps var. orientalis Hara, Lespedeza cuneata G. Don, Arundinella hirta var. ciliata K.) This study was conducted at Dan-kook University from April, 1988 to Octover, 1989. The results are summurized as follows; 1.Cool-season grasses covered the ground quickly in early stage, and weekened slowly during sumer season. Warm-season grasses and native-plants covered the ground slowly in early stage, but during summer season they grew vigorously, so outweighed cool season grasses. 2. The amount of aboveground growth of weeping locearass and underground growth of Artemisia prinoepts are quite differant from others. Since Arumdinella hirta has deep root system, it is thought to very useful protection of unstable for hrdro-seeding. Because cool-season grasses are useful for quick coverage, and native plants or warm-season grow well during summer season with the better compatability to weeds. 3.Mixture III(cool-season and warm-season grasses), mixtureIV(native spp. and Italian ruegrass), and mixtureV(native spp.) resulted in better control of erosion control on man-made slopes. Native spp. has equivallent capacity of erosion control compared to several foreign grasses.

  • PDF

A Study on the Forest Ecology in Young-il Soil Erosion Control District (영일사방사업지(迎日砂防事業地)의 삼림생태학적(森林生態學的) 연구(硏究))

  • Hong, Sung Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.58 no.1
    • /
    • pp.41-47
    • /
    • 1982
  • The large devastated land in Young-il district, Gyeongsangbusdo, had been existed for a long time, and the Korean government had invested 3.8 billion won to control soil erosion of the area for 5 years from 1973 to 1977. This research was to investigate the changes of the soil profile and vegetation structure in the 3rd, 6th and 9th years since soil erosion control had implemented. The results obtained in this study are as follows: 1) The thickness of the litter layer (L), the fermentation layer(F), the humified layer(H) and the surface soil layer(S) increased with increasing years after implements soil erosion control project had started. 2) The H layer was not showed for the three years since the project had implemented but was in the sixty year. 3) The soil chemical elements including the organic matter and total nitrogen increased with increasing years after the project had started, the amounts of organic matter and total nitrogen were three and seven times higher respectively in the nineth year after project had started. The amounts of organic matter and total nitrogen were three and seven times higher, respectively in the nineth year after project started than those before. 4) Among the grasses and trees which had been sowed or planted during project period, the summed domination ratios for arundinella hirta var ciliare. Themeda japonica, Cymbopogen goeringi and Lespedeza bicolor decreased rapidly, while those for Robinia pesudoacacia and Pinus densiflora increased with increasing years after the project started. 5) The appearance of Quercus seedlings suited to this area and Pinus densiflora seedling which is a subclimax species increased with increasing years after the project started.

  • PDF

Variations of Soil Bulk Density and Natural Revegetation on the Logging Road of Timber Harvested-Sites (벌채적지(伐採跡地) 운재로(運材路)의 토양가밀도(土壤假密度) 변화(變化)와 자연식생회복(自然植生回復)에 관한 연구(硏究))

  • Woo, Bo-Myeong;Park, Jae-Hyeon;Kim, Kyung-Hoon
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.545-555
    • /
    • 1994
  • The objective of the study was to provide the useful scientific data on the early rehabilitation of the legging road after timber harvesting in the forest area. This study was carried out at logging roads which were constructed during 1989 and 1994 in Mt. Baekwoon. The field survey was conducted in July, 1991. Judging from the analysis of soil bulk density, time required for recovery as the undisturbed forest soil condition was more than 10 years in the road which was left, and the regression equation is as follows, $$Y_1=1.4195-0.0744{\cdot}X(R^2=0.91)$$ $$Y_2=1.4673-0.0688{\cdot}X(R^2=0.73)$$ (X : elapsed year after road construction. $Y_1$, $Y_2$ : soil bulk density($g/cm^3$) at 0~7.5cm, and 7.5~15.0cm, respectively) Especially soil bulk density with buffer strip-woods was $0.890-0.903g/cm^3$, so it was 20% lower than that of logging road surface without buffer strip-woods. Among the 7 factors, location, sand content, and soil hardness had statistically significant effect on the soil bulk density in logging road surface. The pioneer species on logging road surface were Rhus cratargifolius, Prunus chinensis, and Lespedeza cyrtobotrya, etc. in woody species, and Pteridium aquilinum, Arundinella hirta, and Lysimachia clethroides, etc. in herb species. So, in process of year, average plant coverage were 70% on cutting and banking slope and 20% on logging road surface which elapsed 6 years after logging road construction. Through this research, buffer strip-woods must be remained for environmental conservation of forest conditions, and from the time to be closed the road, planting, seeding, and grazing works could be effective to the soil condition and vegetation recovery.

  • PDF

Forest Vegetation Structure in Maruguem (the Ridge Line) Area of Gitdaebaegibong to Jukryeong, Baekdudaegan (백두대간(깃대배기봉-죽령 구간) 마루금 주변의 산림식생구조)

  • Song, Ju Hyeon;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.147-167
    • /
    • 2019
  • This study was conducted to analyze forest vegetation structure in the Marugeum (Ridge) area of Gitdaebaegibong to Jukryeong, Baekdudaegan. Data were collected in 298 quadrates through a Braun-Blanquet vegetation survey from April, 2018 to October, 2018. Forest vegetation was classified into 13 vegetation units. A Quercus mongolica community was divided into Morus bombycis, Filipendula glaberrima, Fraxinus sieboldiana, Prunus maackii unit and Q. mongolica typical unit. The M. bombycis unit was further classified into a Deutzia glabrata group and M. bombycis typical group. The F. glaberrima unit was subdivided into a Veratrum oxysepalum group, Arundinella hirta group, and F. glaberrima typical group. The F. sieboldiana unit was divided into a Pinus densiflora group, Larix kaempferi group, and F. sieboliana typical group. The relationship between vegetation units and environmental factors was studied through coincidence analysis and CCA. The F. glaberrima unit (VU 6~8) was distributed by elevation above 1,200 m and other vegetation units were distributed below 1,200 m. Results of the CCA analysis showed that the F. glaberrima unit distribution is positively correlated with elevation. As a result of species diversity, the F. glaberrima unit was higher than other vegetation units. A similarity index analysis revealed that the F. sieboldiana unit (VU 9~11) was relatively homogeneous, and the M. bombycis unit (VU 1~5) and A. girta group (VU 7) were relatively heterogeneous. A detrended correspondence analysis determined that the distance between the statistical axes of the M. bombycis and F. glaberrima units was the greatest, which is consistent with the analysis of the similarity index. As a result of interspecific correlation of major woody plants, hydrophilic species were positively correlated, and a negative correlation was found between Q. mongolica and intolerant species such as P. densiflora and L. kaempferi.

Selection Indices to Identify Drought-tolerance and Growth Characteristics of the Selected Korean Native Plants (자생식물로부터 내건성 식물의 최적인자 선발과 생육특성)

  • Im, Hyeon Jeong;Song, Hyeon Jin;Jeong, Mi Jin;Seo, Yeong Rong;Kim, Hak Gon;Park, Dong Jin;Yang, Woo Hyung;Kim, Yong Duck;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.73-82
    • /
    • 2016
  • Best drought tolerance index was determined through statistics analysis and growth appearance of drought tolerant plants was determined by cultivation in pot and sloping land. For determination of best drought tolerant indicators, RD(Resistant dry days), LD(Leaf area), UTR(Unit transpiration), RWC(Relative water content), RWL(Relative water loss), LA(Leaf area), SN(Stoma unmber) and SA(Stoma area) were carried out by correlation and PCA analysis. RWL and UTR were affected on plant drought tolerance according to comparison among six indices for resistant dry days. The PCs axes separated SA, LA, RD and RWC and SN. UTR was negatively correlated with SA, RWL were also negatively correlated with RWC and SN. RWL and UTR were proved best selection indicator for the selection of drought tolerant species. Ulmus parvifolia, Bidens bipinnata, Patrinia villosa, Kummerowia striata, Arundinella hirta, Artemisia gmelini etc. were selected drought tolerant plants. Shoot growth appearance of drought resistant plants was differed pot and sloping land. Shoot growth and leaf number was no significant differences between the pot and sloping land. However, root growth of drought tolerant plants was all the difference between two cultivation. T/R ratio of drought tolerant plants was also found a big difference. T/R ratio of drought tolerant plants in sloping land was lower than that of pot. These results will be served efficiently plant breeding.

Studies on the Natural Distribution and Ecology of Ilex cornuta Lindley et Pax. in Korea (호랑가시나무의 천연분포(天然分布)와 군낙생태(群落生態)에 관한 연구(研究))

  • Lee, Jeong Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.62 no.1
    • /
    • pp.24-42
    • /
    • 1983
  • To develop Ilex cornuta which grow naturally in the southwest seaside district as new ornamental tree, the author chose I. cornuta growing in the four natural communities and those cultivated in Kwangju city as a sample, and investigated its ecology, morphology and characteristics. The results obtained was summarized as follows; 1) The natural distribution of I. cornuta marks $35^{\circ}$43'N and $126^{\circ}$44'E in the southwestern part of Korea and $33^{\circ}$20'N and $126^{\circ}$15'E in Jejoo island. This area has the following necessary conditions for Ilex cornuta: the annual average temperature is above $12^{\circ}C$, the coldness index below $-12.7^{\circ}C$, annual average relative humidity 75-80%, and the number of snow-covering days is 20-25 days, situated within 20km of from coastline and within, 100m above sea level and mainly at the foot of the mountain facing the southeast. 2) The vegetation in I. cornuta community can be divided that upper layer is composed of Pinus thunbergii and P. densiflora, middle layer of Eurya japonica var. montana, Ilex cornuta and Vaccinium bracteatum, and the ground vegetation is composed of Carex lanceolata and Arundinella hirta var. ciliare. The community has high species diversity which indicates it is at the stage of development. Although I. cornuta is a species of the southern type of temperate zone where coniferous tree or broad leaved, evergreen trees grow together, it occasionally grows in the subtropical zone. 3) Parent rock is gneiss or rhyolite etc., and soil is acidic (about pH 4.5-5.0) and the content of available phosphorus is low. 4) At maturity, the height growth averaged $10.48{\pm}0.23cm$ a year and the diameter growth 0.43 cm a year, and the annual ring was not clear. Mean leaf-number was 11.34. There are a significant positive correlation between twig-elongation and leaf-number. 5) One-year-old seedling grows up to 10.66 cm (max. 18.2 cm, min. 4.0 cm) in shoot-height, with its leaf number 12.1 (max. 18, min), its basal diameter 2.24 mm (max. 4.0 mm, min. 1.0 mm) and shows rhythmical growth in high temperature period. There were significant positive correlations between stalk-height and leaf-number, between stalk-height and basal-diameter, and between number and basal diameter. 6) The flowering time ranged from the end of April to the beginning of May, and the flower has tetra-merouscorella and corymb of yellowish green. It has a bisexual flower and dioecism with a sexual ratio 1:1. 7) The fruit, after fertilization, grows 0.87 cm long (0.61-1.31 cm) and 0.8 cm wide (0.62-1.05 cm) by the beginning of May. Fruits begin to turn red and continue to ripen until the end of October or the beginning of November and remain unfading until the end of following May. With the partial change in color of dark-brown at the beginning of the June fruits begin to fall, bur some remain even after three years. 8) The seed acquision ratio is 24.7% by weight, and the number of grains per fruit averages 3.9 and the seed weight per liter is 114.2 gram, while the average weight of 1,000 seeds is 24.56 grams. 9) Seeds after complete removal of sarcocarp, were buried under ground in a fixed temperature and humidity and they began to develop root in October, a year later and germinated in the next April. Under sunlight or drought, however, the dormant state may be continued.

  • PDF