• Title/Summary/Keyword: Artillery position

Search Result 31, Processing Time 0.026 seconds

GPS Translator Design and Manufacturing for High Dynamic Vehicle (고기동 항체의 위치추적용 GPS 중계기 설계/제작)

  • 강설묵;이상정
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.39-48
    • /
    • 2003
  • A GPS translator system is used to get the precise and reliable trajectory data for the high dynamic test vehicles, such as missiles or artillery shells. The missile system with high dynamics, vibration and shock needs to determine its position and velocity in particular. The proposed GPS translator on the test vehicle receives GPS signals, amplifies, down-converts, digitally samples, BPSK modulates, up-converts them to S-band, and then retransmits them to the ground translator processing station. It has doppler variation and signal noise, so design method for resolving them is proposed. The performance of the translator is proved by environmental test and real flight test.

Study for Improving Target Coordinate Acquisition Accuracy from Long Distance by VRS RTK (VRS RTK를 이용한 원거리 표적좌표획득의 정확도 향상에 대한 연구)

  • Lee, Dongnyok;Yoon, Keunsig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.471-480
    • /
    • 2018
  • Accurate target coordinate is very important in military operations especially field artillery's ground-to-ground attack and air-force's air-to-ground attack. DOS(or TAS) is used to acquire target coordinates from long distance. DOS is comprised of LRF and goniometer. LRF measures distance between DOS and target. Goniometer is comprised of azimuth and vertical angular sensors, DMC and internal GPS receiver. DOS must set the position and orientation(finding grid north) before measurement step(target coordinate acquisition). To improve accuracy of target coordinate, VRS RTK and reference point method are proposed in DOS setup step. VRS RTK provides accurate location coordinate with small deviations, providing high accuracy and precision in positioning and orientation. As a result, horizontal coordinate(easting and northing) accuracy is improved from 2.68 mil(C.L. = 0.95) mil to 0.58 mil(C.L. = 0.95).

A Study on the Japanese Military Installations of Jisim-do (지심도(只心島)의 일본군사시설에 관한 연구)

  • Lee, Ji-Young;Seo, Chi-Sang
    • Journal of architectural history
    • /
    • v.22 no.5
    • /
    • pp.37-46
    • /
    • 2013
  • This paper aims to examine the constructional background and process of the Japanese military installations of Jisim-do, especially based on the military secret documents. Furthermore, it aims to analyze the characteristics of the remains. First, the study looked into the procedure of forcible occupation by Japan, involving the background of the designation and forcible accommodation of military reservations, and forced eviction by the purchase of land. Second, the study identified the background of construction, purpose, and construction period of each battery built throughout the 'Fort maintenance period' according to changes in international situations. Third, it is the 'Chukseongbu' that supervised the construction of fortresses. Fourth, the study considered a series of arrangement processes in which Jisim-do became a fortresses through "Yukgunsungdae-ilgi", a military operations report for the Japanese army. Through this, it discovered a clear construction process, construction details, and the supply for Jisim-do. The study was also able to reveal the meticulousness in constructing firm facilities more promptly from the 'design tactics'.

Motion Profile Generation Method for Absolute Angular Error Control Mode of Gun/Turret Driving System (포/포탑 구동 시스템의 절대 각 오차 제어 모드에 대한 모션 프로파일 생성 기법)

  • Eom, Myunghwan;Song, Sinwoo;Park, Ilwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.674-686
    • /
    • 2019
  • In this paper, we will discuss the absolute angular error control mode for the Gun/Turret driving system. The Gun/Turret driving controller receives absolute angular error calculated from the fire control system (FCS). Thus, the Gun/Turret driving controller is subjected to step command to cause residual vibration and system unstable. In order to reduce residual vibration and to ensure the system stability, we propose an error motion profile method with two types of trapezoidal and S-Curve. The validity of the proposed error motion profile method is confirmed via simulation by observing that the resulting position error, driving power, and power density satisfied the control performance.

Classification Type of Weapon Using Artificial Intelligence for Counter-battery RadarPaper Title (인공지능을 이용한 대포병탐지레이더의 탄종 식별)

  • Park, Sung-Jin;Jin, Hyung-Seuk
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.921-930
    • /
    • 2020
  • The Counter-battery radar estimates the origin and impact point of the artillery by tracking the trajectory of the shell. In addition, it has the ability of identifying the type of weapon. Depending on the position between the shell and the radar, the detected signals appear differently. This has ambiguity to distinguish the type of shells. This paper compares fuzzy logic and artificial intelligence, which classifies type of shell using the parameter of signal processing step. According to the research result, artificial intelligence can improve identification rate of type of shell. The data used in the experiment was obtained from a live fire detection test.

Modeling and Simulation of Optimal Path Considering Battlefield-situation in the War-game Simulation (워게임 시뮬레이션에서 전장상황을 고려한 최적경로 모델링 및 시뮬레이션)

  • Lee, Sung-Young;Jang, Sung-Ho;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.27-35
    • /
    • 2010
  • War-games using C4I systems have been used to improve the command ability of commanders and the fighting power of combat forces. During a war-game simulation, a commander makes a plan for the movement of a combat force and issues orders to the combat force according to the plan. If it is possible to minimize damages from the artillery of enemy forces and take the advantage position where is effective for attack/defense, we can hold a dominant position of the battlefield. Therefore, this papers proposes a genetic algorithm-based optimal path searching method. The proposed method creates an optimal path of a combat force by taking into consideration dangerous conditions of the battlefield in which the combat force is. This paper also shows the process of creating an optimal path by using a discrete event specification modeling and simulation method.

A Study on the Reduction Technique of Recoil Force for Soft Recoil System using Dynamic Behavior (동적 거동을 이용한 연식주퇴장치의 주퇴력 저감 기법 연구)

  • Yoo, Sam-Hyeon;Lee, Jae-Yeong;Lee, Jong-Woo;Jo, Seong-Sik;Kim, Ju-Hee;Kim, In-Su;Lim, Soo-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • The future combat system is likely to be studied and developed in terms of enhancing both firepower and mobility simultaneously. Increased firepower often necessitates a heavier firing system. In return, the body of the vehicle needs to be light-weight in order to improve the mobility of the whole system. For this reason, in the areas of weapons systems such as the tank and self-propelled artillery, a number of studies attempting to develop designs that reduce recoil force against the body of the vehicle are being conducted. The current study proposes a tank construction that has a mass-spring-damper system with two degrees of freedom. A tank structure mounted with a specific soft recoil system that was implemented using a soft recoil technique and another tank structure based on a general recoil technique were compared to each other in order to analyze the recoil forces, the displacements of recoil, and the firing intervals when they were firing. MATLAB-Simulink was used as a simulating tool. In addition, the relationship between the movement of the recoil parts and the positions of the recoil latches in each of the two structures were analyzed. The recoil impact power, recoil displacement, firing interval, and so on were derived as functional formulas based on the position of the recoil latch.

An Accuracy Improvement Method on Acoustic Source Localization Using Ground Reflection Effect (지면반사효과를 이용한 폭발 소음원의 위치 추정 정밀도 향상법)

  • Go, Yeong-Ju;Choi, Donghun;Lee, Jaehyung;Choi, Jong-Soo;Ha, Jae-Hyoun;Na, Taeheum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • A technique for improving estimation accuracy is introduced in order to locate the impact position of artillery shell during the weapon scoring test. Study on localization of impacts using acoustic measurement has been conducted and the usability of sensor array is verified with experiments. When the blast occurs above the ground in the firing range, the acoustic sensor above the ground can measure the directly propagated sound with the ground-reflected one. In this study, a method for reducing estimation error by using the reflection signal measurements based on the time difference of arrival method. Considering the reflection sound works as same as placing a virtual sensor symmetrically through the ground. This idea enables a virtual three-dimensional array configuration with a two-dimensional plane array above the ground as such. The time difference between the direct and the reflected propagations can be estimated using cepstrum analysis. Performance test has been made in the simulation experiment in the football size area.

Development of Effective Test Method for Positioning Accuracy of Armed Vehicle Inertial Navigation System (기동화력장비 관성항법장치의 효과적인 위치정확도 시험방법 개발)

  • Kim, Sung Hoon;Bae, In Hwa;Kim, Sang Boo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.619-632
    • /
    • 2023
  • Purpose: The main function of INS (Inertial Navigation System) is to measure the position of an armed vehicle and its performance is confirmed through the positioning accuracy test of Korean Defense Standards (KDS). The current standards, however, do not provide clear test methods and the conditions for performing positioning accuracy tests. Accordingly, the purpose of this study is to develop a new method for positioning accuracy test which would be effective. Methods: In this study, a new INS positioning accuracy test method is suggested based on the analysis of test data collected through a statistical experiment known as central composite design. For the positioning accuracy experiment of K105A1, a self-propelled artillery, two factors of driving velocity and driving distance are considered. Results: Based on the analysis of experimental data, a regression model for the positioning error is fitted and the positioning accuracy test of INS is so developed to maximize the positioning error. The standard proximity rate is used as an additional test criterion to evaluate the performance level of INS. Conclusion: The proposed new positioning accuracy test for INS has the advantage of finding the nonconforming items effectively. It is also expected to be utilized for the other similar INS positioning accuracy tests.

A Study on the Design Improvement to prevent the stoppage phenomenon of Launch Support Device for Self-Propelled Artillery (자주포용 발사지지대의 멈춤현상 방지를 위한 설계개선 연구)

  • Kim, Sung Hoon;Park, Young Min;Noh, Sang Wan;Park, Dae Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.443-450
    • /
    • 2020
  • This paper reports a design improvement study to solve the stoppage phenomenon caused by the launch-support device applied to K105A1. The K105A1 is a weapon system equipped with an old 105 mm towed howitzer in a wheeled vehicle, which provides superior maneuverability compared to track equipment. The launch support device serves to withstand fire impact and load. In this way, this device is fixed firmly to the ground in preparation for the shooting mission and is responsible for the critical performance, such as fixing the position of the vehicle. On the other hand, during the field test, a temporary stoppage of the launch support occurred, which caused a problem of not being fixed to the ground. To solve this problem, the cause of failure was analyzed by a replay test and parts inspection. In addition, the operating concept, method, and design were analyzed to derive the cause and solve the problem by changing the parts design. Finally, the performance and firing missions were performed normally by applying the changed design to K105A1. The performance stability and reliability of the launch support device were confirmed, which are expected to be of great assistance in the development of military equipment in the future.